Preview

Systemic Hypertension

Advanced search

Blood pressure level and arterial stiffness parameters role in prediction of the antihypertensive therapy efficacy escape phenomenon

https://doi.org/10.26442/2075-082X_2018.2.49-54

Abstract

The aim of the study was to evaluate blood pressure (BP) level and vessel wall stiffness parameters role in antihypertensive therapy (AHT) escape phenomena development on the background of primarily effective AHT use. Materials and methods. Data from 102 patients with arterial hypertension level 1-3, stage I-II were analyzed. All patients underwent individual AHT adjustment for 2-3 weeks (adjustment period). At the end of the adjustment period the therapy effectiveness was evaluated with clinical BP measurement (target BP values less than 140/90 mm hg) and 24-hour BP monitoring (target daily BP values less than 130/80 mm hg). The study included only those patients who reached target clinical and daily BP values on the background of 2-3 antihypertensive drugs use at the end of the adjustment period. At the beginning of the observation period after effective AHT was used carotid-femoral pulse wave velocity was evaluated with applanation tonometry. For the purpose of timely escape phenomena diagnosis clinical BP measurement and 24-hour BP monitoring were performed in 1, 3, and 6 months after the trial start in all patients. Results. After 6 months of observation patients were divided in 2 groups: group 1 included 34 patients with AHT escape phenomena, group 2 - 68 patients with stable, controlled AH. In group 1 on the background of effective AHT use at the beginning of observation higher levels of following measures were observed: clinical systolic BP - SBP (125.2±11.3 mm hg vs 119.7±11.7 mm hg, p=0.021), daily SBP (128.0±3.3 mm hg vs 121.2±7.4 mm hg, p=0.000), daily average SBP (131.6±4.9 mm hg vs 125.3±8.5 mm hg, р=0.000), night average SBP (120.4±8.5 mm hg vs 111.8±8.6 mm hg, р=0.000), daily pulse BP 50.2±4.8 mm hg vs 44.2±7.6 mm hg, p=0.000), daily mean brachial artery stiffness index - ASI (161.9±28.3 mm hg vs 142.2±24.5 mm p=0.000), carotid-femoral pulse wave velocity (11.6±2.5 m/s vs 10.5±2.3 m/s, p=0.029). In single-factor logistic regression models all these measures were shown to have predictive value in AHT escape phenomena development. According to multifactor logistic regression analysis that included carotid-femoral pulse wave velocity more than 10.8 m/s, daily mean ASI>137, daily SBP>124 mm hg, and daily pulse BP>46 mm hg, the only independent predictor on the background of effective AHT at the beginning of the observation was daily SBP>124 mm hg (odds ratio 19.1, 95% confidence interval 3.6-101.8; p=0.0004). Conclusion. BP level and artery stiffness index measured on the background of effective AHT at the beginning of the observation are predictors for escape phenomena development and can be used for effectiveness and required frequency of therapy management prognosis.

About the Authors

O. O. Mikhailova
A.L.Myasnikov Institute of Clinical Cardiology of the National Medical Research Center of Cardiologyof the Ministry of Health of the Russian Federation
Russian Federation


E. M. Elfimova
A.L.Myasnikov Institute of Clinical Cardiology of the National Medical Research Center of Cardiologyof the Ministry of Health of the Russian Federation
Russian Federation


A. Yu. Litvin
A.L.Myasnikov Institute of Clinical Cardiology of the National Medical Research Center of Cardiologyof the Ministry of Health of the Russian Federation
Russian Federation


A. N. Rogoza
A.L.Myasnikov Institute of Clinical Cardiology of the National Medical Research Center of Cardiologyof the Ministry of Health of the Russian Federation
Russian Federation


References

1. линические рекомендации, разработанные экспертами Российского медицинского общества по артериальной гипертонии, по диагностике и лечению артериальной гипертонии, 2013

2. Mills K.T, Bundy J.D, Kelly T.N et al. Global Disparities of Hypertension Prevalence and Control: A Systematic Analysis of Population-Based Studies From 90 Countries. Circulation 2016; 134 (6): 441-50. DOI: 10.1161/CIRCULATIONAHA.115.018912

3. Бойцов С.А., Баланова Ю.А., Шальнова С.А. Артериальная гипертония среди лиц 25-64 лет: распространенность, осведомленность, лечение и контроль. По материалам исследования ЭССЕ. Кардиоваскулярная терапия и профилактика. 2014; 4: 4-14.

4. Цагреишвили Е.В. Метод самоконтроля артериального давления в оценке эффективности антигипертензивной терапии и повышения приверженности к лечению у больных артериальной гипертонией в амбулаторных условиях. Дис. … канд. мед. наук. М., 2006.

5. Frohlich E.D. Classification of resistant hypertension. Hypertension 1988; 11: 1524-4563.

6. Михайлова О.О., Литвин А.Ю., Рогоза А.Н. Влияние модифицируемых факторов риска развития сердечно-сосудистых осложнений на «ускользание» эффективности антигипертензивной терапии. Терапевтич. архив. 2017; 89 (9): 10-4. DOI: 10.17116/terarkh201789910-14

7. Маколкин В.И. Современные принципы и тактика лечения гипертонической болезни. Рос. мед. вестн. 1997; 2 (1): 4-10.

8. Маколкин В.И. Совершенствование комбинированной терапии - путь к улучшению результатов лечения артериальной гипертонии. РМЖ. 2007; 16: 1238.

9. Kaess B.M, Rong J, Larson M.G. Aortic Stiffness, Blood Pressure Progression, and Incident Hypertension. JAMA 2012; 308 (9): 875-81. DOI: 10.1001/2012.jama.10503

10. Takase H, Dohi Y, Toriyama T et al. Brachial-ankle pulse wave velocity predicts increase in blood pressure and onset of hypertension. Am J Hypertens 2011; 24 (6): 667-73.

11. Najjar S.S, Scuteri A, Shetty V et al. Pulse wave velocity is an independent predictor of the longitudinal increase in systolic blood pressure and of incident hypertension in the Baltimore Longitudinal Study of Aging. J Am Coll Cardiol 2008; 51 (14): 1377-83.

12. Liao D, Arnett D.K, Tyroler H.A et al. Arterial stiffness and the development of hypertension. The ARIC study. Hypertension 1999; 34: 201-6.

13. A Randomized Trial of Intensive versus Standard Blood-Pressure Control. New Engl J Med 2016; 374 (23): 2290-5. DOI: 10.1056/nejmc1602668

14. The ACCORD Study Group. Effects of Intensive Blood-Pressure Control in Type 2 Diabetes Mellitus. N Engl J Med 2010; 362: 1575-85, 2010. DOI: 10.1056/NEJMoa1001286

15. Lonn E.M, Bosch J, López-Jaramillo P et al. Blood-Pressure Lowering in Intermediate-Risk Persons without Cardiovascular Disease. New Engl J Med 2016; 374: 2009-20. DOI: 10.1056/NEJMoa1600175

16. A Randomized Trial of Intensive versus Standard Blood-Pressure Control. New Engl J Med 2016; 374 (23): 2290-5. DOI: 10.1056/nejmc1602668

17. Mancia G, Fagard R, Narkiewicz K et al. 2013 ESH/ESC guidelines for the management of arterial hypertension. Eur Heart J 2013; 31 (7): 1281-357.

18. Angeli F, Reboldi G, Verdecchia P. Interpretation of ambulatory blood pressure profile: a prognostic approach for clinical practice. J Hypertens 2015; 33: 454-7.

19. Parati G, Stergiou G, O’Brien E et al. European Society of Hypertension practice guidelines for ambulatory blood pressure monitoring. J Hypertens 2014; 32: 1359-66.

20. Angeli F, Reboldi G, Poltronieri C et al. Clinical utility of ambulatory blood pressure monitoring in the management of hypertension. Expert Rev Cardiovas Ther 2014; 12: 623-34.

21. Чазова И.Е., Данилов Н.М., Литвин А.Ю. Рефрактерная артериальная гипертония. Монография. М.: Атмосфера, 2014.

22. Verdecchia P, Angeli F, Bartolini C, Reboldi G. Twenty-four hour ambulatory blood pressure monitoring to all? Comments to the US Preventive Services Task Force document. J Am Soc Hypertens: JASH 2015; 9: 911-5.

23. Reboldi G, Angeli F, Verdecchia P. Interpretation of ambulatory blood pressure profile for risk stratification: keep it simple. Hypertension 2014; 63: 913-4.

24. Verdecchia P, Angeli F. How can we use the results of ambulatory blood pressure monitoring in clinical practice? Hypertension 2005; 46: 25-6.

25. Verdecchia P, Reboldi G, Porcellati C et al. Risk of cardiovascular disease in relation to achieved office and ambulatory blood pressure control in treated hypertensive subjects. J Am Coll Cardiol 2002; 39: 878-85.

26. Clement D.L, de Buyzere M.L, de Bacquer D.A et al. Prognostic value of ambulatory blood-pressure recordings in patients with treated hypertension. N Engl J Med 2003; 348: 2407-15.

27. Redon J, Campos C, Narciso M.L et al. Prognostic value of ambulatory blood pressure monitoring in refractory hypertension: a prospective study. Hypertension 1998; 31: 712-8.

28. Townsend R.R, Wilkinson I.B, Schiffrin E.L et al. American Heart Association Council on Hypertension. Recommendations for Improving and Standardizing Vascular Research on Arterial Stiffness. A Scientific Statement from the American Heart Association. J Hypertens 2015; 66 (3): 698-722.

29. Mattace-Raso F.U, van der Cammen T.J, Hofman A et al. Arterial stiffness and risk of coronary heart disease and stroke: the Rotterdam Study. Circulation 2006; 113: 657-63.

30. Willum-Hansen T, Staessen J.A, Torp-Pedersen C et al. Prognostic value of aortic pulse wave velocity as index of arterial stiffness in the general population. Circulation 2006; 113: 664-70.

31. Laurent S, Boutouyrie P, Asmar R et al. Aortic stiffness is an independent predictor of all-cause and cardiovascular mortality in hypertensive patients. Hypertension 2001; 37: 1236-41.

32. Blacher J, Guerin A.P, Pannier B et al. Impact of aortic stiffness on survival in end-stage renal disease. Circulation 1999; 99: 2434-9.

33. Boutouyrie P, Tropeano A.I, Asmar R et al. Aortic stiffness is an independent predictor of primary coronary events in hypertensive patients: a longitudinal study. Hypertension 2002; 39: 10-5.

34. Laurent S, Katsahian S, Fassot C et al. Aortic stiffness is an independent predictor of fatal stroke in essential hypertension. Stroke 2003; 34: 1203-6.

35. Williams B, Lacy P.S, Thom S.M et al. CAFÉ investigators; Anglo-Scandinavian Cardiac Outcomes Trial Investigators; CAFÉ Steering Committee Writing Committee. Differential impact of blood pressure lowering drugs on central aortic pressure and clinical outcomes: principal results of the Conduit Arterty Function Evaluation (CAFÉ) study. Circulation 2006; 113: 1213-25.

36. Safar M.E, Levy B.I, Struijker-Boudier H. Current perspectives on arterial stiffness and pulse pressure in hypertension and cardiovascular disease. Circ J 2003; 107: 2864-9.

37. Chirinos J.A, Zambrano J.P, Chakko S. et al. Aortic pressure augmentation predicts adverse cardiovascular events in patients with established coronary artery disease. J Hypertens 2005; 45 (5): 980-5.

38. Cheuk-Sing Choy, David Yen-Ju Wang, Tu-Bin Chu. Correlation Between Arterial Stiffness Index and Arterial Wave Pattern and Incidence of Stroke. Int J Gerontol 2010; 4. Issue 2: 75-81.

39. Altunkan S, Oztas K, Seref B. Arterial stiffness index as a screening test for cardiovascular risk: a comparative study between coronary artery calcification determined by electron beam tomography and arterial stiffness index determined by a VitalVision device in asymptomatic subjects. Eur J Intern Med 2005; 16 (8): 580-4.

40. Рогоза А.Н., Ощепкова Е.В., Цагареишвили Е.В., Гориева Ш.Б. Современные неинвазивные методы измерения артериального давления для диагностики артериальной гипертонии и оценки эффективности антигипертензивной терапии. Пособие для врачей. М.: Медика, 2007.


Review

For citations:


Mikhailova O.O., Elfimova E.M., Litvin A.Yu., Rogoza A.N. Blood pressure level and arterial stiffness parameters role in prediction of the antihypertensive therapy efficacy escape phenomenon. Systemic Hypertension. 2018;15(2):49-54. https://doi.org/10.26442/2075-082X_2018.2.49-54

Views: 137


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2075-082X (Print)
ISSN 2542-2189 (Online)