Preview

Systemic Hypertension

Advanced search

Impact of metabolic syndrome parameters and different fat depots on arterial stiffness in patients with abdominal obesity

https://doi.org/10.26442/2075082X.2020.4.200530

Abstract

Overweight is closely associated with development of cardiovascular disorders. Currently, the terms «metabolically healthy abdominal obesity» (MHAO) and «metabolically unhealthy obesity», i.e., metabolic syndrome (MS) are stated. Comparison target organs status and their link with fat depots in persons of these categories is of important scientific and practical interest. Aim. To assess arterial stiffness in young people with abdominal obesity with / without MS by various methods as well as its link with various fat stores and other metabolic factors. Materials and methods. 116 people, 18- to 45-year-old, with abdominal obesity were divided into two groups: MHAO (n=46), aged 40 [34; 43] years and MS (n=70), aged 40 [35; 44] years. The control group (CG) included 16 conditionally healthy volunteers without obesity, aged 32 [27; 35] years (p<0.01). All subjects were assessed for height, body weight, body mass index, and waist circumference. Lipid profile, glucose, 2-hour glucose tolerance test, insulin, leptin, adiponectin, HOMA-IR were determined. 24-hour blood pressure monitoring was performed. Subcutaneous, visceral, perivascular, epicardial fat volumes and, the ratio of subcutaneous fat to visceral fat were determined by computed tomography. Arterial stiffness was determined according to CAVI (Cardio-Ankle Vascular Index), brachial-ankle pulse wave velocity - baPWV (VaSera 1000), aortic pulse wave velocity - aoPWV (EnVisor ultrasound system). Results. aoPWV were significantly different between groups (p<0.01). In persons with MS: 6.6±1.1 m/s, in MHAO and CG groups: 4.3±0.9 m/s and 5.5±1.0 m/s, respectively. Significant differences in baPWV were found only in MS group 13.8±8.2 m/s (p<0.01) compared with CG and MHAO groups: 10.98±1.2 and 12.3±3.8 m/s, respectively. The CAVI index did not differ significantly between groups. There were reliable relationships between aoPWV and baPWV and almost all MS factors. The highest correlation coefficient was between aoPWV and visceral (r=0.55; p≤0.01) and epicardial (r=0.45; p≤0.01) fats. A close relationship between aoPWV and HOMA IR was revealed (r=0.42; p≤0.01). Correlation analysis showed a higher quality relationship between aoPWV and MS markers, insulin resistance, and fat depots compared to baPWV. According to multivariate regression analysis, the main contribution to the formation aoPWV is made by body mass index, systolic blood pressure, and epicardial fat. Conclusion. The most sensitive to metabolic factors and the volume of fat depots was aoPWV indicator. Significant differences on some metabolic risk factors and aoPWV between the control group and MHAO raises doubts about the correctness of the term «metabolically healthy obesity».

About the Authors

M. V. Andreevskaia
National Medical Research Center of Cardiology
Russian Federation


E. A. Zheleznova
National Medical Research Center of Cardiology
Russian Federation


J. V. Zhernakova
National Medical Research Center of Cardiology; Pirogov Russian National Research Medical University
Russian Federation


I. E. Chazova
National Medical Research Center of Cardiology
Russian Federation


M. A. Shariia
National Medical Research Center of Cardiology
Russian Federation


N. V. Blinova
National Medical Research Center of Cardiology
Russian Federation


A. R. Zairova
National Medical Research Center of Cardiology
Russian Federation


M. O. Azimova
National Medical Research Center of Cardiology
Russian Federation


A. N. Rogoza
National Medical Research Center of Cardiology
Russian Federation


M. A. Saidova
National Medical Research Center of Cardiology
Russian Federation


References

1. Koliaki C, Liatis S, Dalamaga M et al. Sarcopenic Obesity: Epidemiologic Evidence, Pathophysiology, and Therapeutic Perspectives. Curr Obes Rep 2019; 8 (4): 458-47. DOI: 10.1007/s13679-019-00359-9

2. Ruiz LD, Zuelch ML, Dimitratos SM et al. Adolescent Obesity: Diet Quality, Psychosocial Health, and Cardiometabolic Risk Factors. Nutrients 2019; 23; 12 (1): 43. DOI: 10.3390/nu12010043

3. Vekic J, Zeljkovic A, Stefanovic A et al. Obesity and dyslipidemia. Metabolism 2019; 92: 71-81. DOI: 10.1016/j.metabol.2018.11.005

4. Lloyd LJ, Langley-Evans SC, McMullen S et al. Childhood obesity and adult cardiovascular disease risk: a systematic review. Int J Obes 2010; 34: 18-28. DOI: 10.1038/ijo.2009.61

5. Kaur J et al. A comprehensive review on metabolic syndrome. Cardiol Res Pract 2014; 2014: 943162. DOI: 10.1155/2014/943162

6. Железнова Е.А., Жернакова Ю.В., Чазова И.Е. и др. Жесткость сосудистой стенки у лиц молодого возраста с абдоминальным ожирением и ее связь с разными жировыми депо. Системные гипертензии. 2018; 15 (4): 76-82. DOI: 10.26442/2075082X.2018.4.180131

7. Ahima RS, Lazar MA et al. Physiology. The health risk of obesity better metrics imperative. Science. 2013; 341: 856-8. DOI: 10.1126/science.1241244

8. Piché M-E, Poirier P, Lemieux I et al. Overview of Epidemiology and Contribution of Obesity and Body Fat Distribution to Cardiovascular Disease: An Update. Prog Cardiovasc Dis 2018; 61 (2): 103-13. DOI: 10.1016/j.pcad.2018.06.004

9. Fox CS, Massaro JM, Hoffmann U et al. Abdominal visceral and subcutaneous adipose tissue compartments: association with metabolic risk factors in the Framingham Heart Study. Circulation 2007; 116: 39-48. DOI: 10.1161/CIRCULATIONAHA.106.675355

10. Bouchi R, Takeuchi T, Akihisa M et al. High visceral fat with low subcutaneous fat accumulation as a determinant of atherosclerosis in patients with type 2 diabetes. Cardiovasc Diabetol 2015; 14: 136. DOI: 10.1186/s12933-015-0302-4

11. Kaess BM, Pedley A, Massaro JM et al. The ratio of visceral to subcutaneous fat, a metric of body fat distribution, is a unique correlate of cardiometabolic risk. Diabetologia 2012; 55: 2622-30. DOI: 10.1007/s00125-012-2639-5

12. Чазова И.Е, Недогода С.В., Жернакова Ю.В. и др. Рекомендации по ведению больных с артериальной гипертонией с метаболическими нарушениями. Кардиологический вестн. 2014; 1: 3-57.

13. Arner P, Bäckdahl J, Hemmingsson P et al. Regional variations in the relationship between arterial stiffness and adipocyte volume or number in obese subjects. Int J Obes 2015; 39: 222-7. DOI: 10.1038/ijo.2014.118

14. Canepa M, AlGhatrif M, Pestelli G et al. Impact of Central Obesity on the Estimation of Carotid-Femoral Pulse Wave Velocity. Am J Hypertens 2014; 27 (9): 1209-17. DOI: 10.1093/ajh/hpu038

15. Orr JS, Gentile CL, Davy BM et al. Large artery stiffening with weight gain in humans: role of visceral fat accumulation. Hypertension 2008; 51: 1519-24. DOI: 10.1161/HYPERTENSIONAHA.108.112946

16. Henry RM, Kostense PJ, Spijkerman AM et al. Arterial stiffness increases with deteriorating glucose tolerancestatus: the Hoorn Study. Circulation 2003; 107: 2089-95. DOI: 10.1161/01.CIR.0000065222.34933.FC

17. Scuteri A, Najjar SS, Orru M et al. The central arterial burden of the metabolic syndrome is similar in men and women: the SardiNIA Study. Eur Heart J 2010; 31: 602-13. DOI: 10.1093/eurheartj/ehp491

18. Topouchiana J, Labat C, Gautier S et al. Effects of metabolic syndrome on arterial function in different age groups: the Advanced Approach to Arterial Stiffness study. J Hypertens 2018 36: 824-33. DOI: 10.1097/HJH.0000000000001631

19. Safar ME, Thomas F, Blacher J et al. Metabolic syndrome and age-related progression of aortic stiffness. J Am Coll Cardiol 2006; 47: 72-5. DOI: 10.1016/j.jacc.2005.08.05.

20. Андреевская М.В., Рогоза А.Н., Саидова М.А., Чихладзе Н.М. Определение скорости пульсовой волны в аорте с использованием метода ультразвукового дуплексного сканирования. Кардиологический вестн. 2014; 3: 75-83.

21. Shah AS, El Ghormli L, Gidding SS et al. Prevalence of arterial stiffness in adolescents with type 2 diabetes in the TODAY cohort: Relationships to glycemic control and other risk factors. J Diabetes Complications 2018; 32 (8): 740-5. DOI: 10.1016/j.jdiacomp.2018.05.013

22. Garcia-Espinosa V, Bia D, Castro J et al. Peripheral and Central Aortic Pressure, Wave-Derived Reflection Parameters, Local and Regional Arterial Stiffness and Structural Parameters in Children and Adolescents: Impact of Body Mass Index. Variations High Blood Press Cardiovasc Prev 2018; 25 (3): 267-80. DOI: 10.1007/s40292-018-0264-1

23. Чазова И.Е и др. Клинические рекомендации Российского медицинского общества по артериальной гипертонии, 2019. Системные гипертензии. 2019; 16 (1): 6-31. DOI: 10.26442/2075082X.2019.1.190179

24. Ben-Shlomo Y, Spears M, Boustred C et al. Aortic pulse wave velocity improves cardiovascular event prediction: an individual participant metaanalysis of prospective observational data from 17,635 subjects. J Am CollCardiol 2014; 63: 636-46. DOI: 10.1016/j.jacc.2013.09.063

25. Laurent S, Cockcroft J, Van Bortel L et al. Expert consensus document on arterial stiffness: methodological issues and clinical applications. Eur Heart J 2006; 27: 2588-605. DOI: 10.1093/eurheartj/ehl254

26. Williams B, Mancia G, Spiering W et al. 2018 ESC/ESH Guidelines for the management of arterial hypertension. Eur Heart J 2018; 39: 3021-104. DOI: 10.1093/eurheartj/ehy339

27. Soukup L, Hruskova J Jurak P et al. Comparison of noninvasive pulse transit time determined from Doppler aortic flow and multichannel bioimpedance plethysmography. Med Biol Eng Comput 2019; 57 (5): 1151-8. DOI: 10.1007/s11517-018-01948-x

28. Townsend RR, Wilkinson IB, Schiffrin EL et al. Recommendations for improving and standardizing vascular research on arterial stiffness: a scientific statement from the American Heart Association. Hypertension 2015; 66: 698-722. DOI: 10.1161/HYP.0000000000000033

29. Gomez-Sanchez L, Garcia-Ortiz L, Patino-Alonso M et al. MARK group. The association between the cardio ankle vascular index and other parameters of vascular structure and function in Caucasian adults: the MARK study. J Atheroscler Thromb 2015; 22: 901-11. DOI: 10.5551/jat.28035

30. Yambe T, Yoshizawa M, Saijo Y et al. Brachial-ankle pulse wave velocity and cardio-ankle vascular index (CAVI). Biomed Pharmacother 2004; 58 (1): 95-8. DOI: 10.2147/VHRM.S179366

31. Рогоза А.Н., Балахонова Т.В., Чихладзе Н.М. и др. Современные методы оценки состояния сосудов у больных артериальной гипертонией. М.: Атмосфера, 2008.

32. Андреевская М.В., Чихладзе Н.М., Саидова М.А. Возможности ультразвуковых методов оценки ригидности аорты и ее значимость при патологии сердца и сосудов. Ультразвуковая и функциональная диагностика. 2009; 2: 91-7.

33. Britton KA et al. Prevalence, Distribution, and Risk Factor Correlates of High Thoracic Periaortic Fat in the Framingham Heart Study. J Am Heart Assoc 2012; 1 (6): e004200. DOI: 10.1161/JAHA.112.004200

34. Sarin S, Wenger C, Marwaha A et al. Clinical significance of epicardial fat measured using cardiac multislice computed tomography, Am J Cardiol 2008; 102 (6): 767-71. DOI: 10.1016/j.amjcard.2008.04.058

35. Calabia J, Torguet P, Garcia M et al. Doppler ultrasound in the measurement of pulse wave velocity: Agreement with the Complior method. Cardiovascular Ultrasound 2011; 9 (1). DOI: 10.1186/1476-7120-9-13

36. Boutouyrie Р et al Determinants of pulse wave velocity in healthy people and in the presence of cardiovascular risk factors: ‘establishing normal and reference values’. Eur Heart J 2010; 31 (19): 2338-50. DOI: 10.1093/eurheartj/ehq165

37. Miyai N, Utsumi M, Gowa Y. Age-specific nomogram of brachial-ankle pulse wave velocity in Japanese adolescents Clin Exp Hypertens 2013; 35 (2): 95-101. DOI: 10.3109/10641963.2012.690473

38. Ninomiya T, Tomiyama H. Brachial-Ankle Pulse Wave Velocity and the Risk Prediction of Cardiovascular Disease: An Individual Participant Data Meta-Analysis. Hypertension 2017; 69 (6): 1045-52. DOI: 10.1161/HYPERTENSIONAHA.117.09097

39. Haraguchi N, Koyama T, Kuriyama N et al. Assessment of anthropometric indices other than BMI to evaluate arterial stiffness. Hypertens Res 2019; 42 (10): 1599-605. DOI: 10.1038/s41440-019-0264-0

40. Lee HJ, Kim HL, Chung J et al. Interaction of Metabolic Health and Obesity on Subclinical Target Organ Damage. Metab Syndr Relat Disord 2018; 16 (1): 46-53. DOI: 10.1089/met.2017.0078

41. Дружилов М.А., Дружилова О.Ю., Кузнецова Т.Ю. Ультразвуковая оценка абдоминальной висцеральной жировой ткани как инструмент стратификации ожирения в отношении высокого кардиометаболического риска. Системные гипертензии. 2018; 15 (4): 70-5. DOI: 10.26442/2075082X.2018.4.180150

42. Hacıhamdioğlu B, Öçal G, Berberoğlu M et al. Preperitoneal fat tissue may be associated with arterial stiffness in obese adolescents. Ultrasound Med Biol 2014; 40 (5): 871-6. DOI: 10.1016/j.ultrasmedbio.2013.11.014

43. Homsi R, Thomas D, Gieseke J et al. Epicardial Fat Volume and Aortic Stiffness in Healthy Individuals: A Quantitative Cardiac Magnetic Resonance Study. Rofo 2016; 188 (9): 853-8. DOI: 10.1055/s-0042-110098

44. Kim BJ, Kim BS, Kang JH et al. Echocardiographic epicardial fat thickness is associated with arterial stiffness. Int J Cardiol 2013; 167: 2234-8. DOI: 10.1016/j.ijcard.2012.06.013

45. Park HE, Choi SY, Kim HS et al. Epicardial fat reflects arterial stiffness: assessment using 256-slice multidetector coronary computed tomography and cardio-ankle vascular index. J Atheroscler Thromb 2012; 19: 570-6. DOI: 10.5551/jat.12484

46. Fitzgibbons TP, Czech MP et al. Epicardial and perivascular adipose tissues and their influence on cardiovascular disease: basic mechanisms and clinical associations. J Am Heart Assoc 2014; 3: e000582. DOI: 10.1161/JAHA.113.000582

47. Nakanishi N, Suzuki K, Tatara K et al. Clustered features of the metabolic syndrome and the risk for increased aortic pulse wave velocity in middle-aged Japanese men. Angiology 2003; 54: 551-9. DOI: 10.1177/000331970305400504

48. Демидова Т.Ю., Зенина С.Г. Роль инсулинорезистентности в развитии сахарного диабета и других состояний. Современные возможности коррекции. РМЖ. Медицинское обозрение. 2019; 10 (II): 116-22.


Review

For citations:


Andreevskaia M.V., Zheleznova E.A., Zhernakova J.V., Chazova I.E., Shariia M.A., Blinova N.V., Zairova A.R., Azimova M.O., Rogoza A.N., Saidova M.A. Impact of metabolic syndrome parameters and different fat depots on arterial stiffness in patients with abdominal obesity. Systemic Hypertension. 2020;17(4):55-62. (In Russ.) https://doi.org/10.26442/2075082X.2020.4.200530

Views: 129


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2075-082X (Print)
ISSN 2542-2189 (Online)