Preview

Systemic Hypertension

Advanced search

Pulmonary hypertension and metabolic disorders

https://doi.org/10.38109/2075-082X-2024-1-37-46

Abstract

This review presents current data regarding the relationship between hyperuricemia, obesity, diabetes mellitus, lipid disorders and pulmonary arterial hypertension (PAH), chronic thromboembolic pulmonary hypertension (CTEPH). Hyperuricemia is associated with a higher risk of developing of PAH, worse prognosis of PAH and greater severity of the patient's condition. Obesity leads to the development of pro-inflammatory and vasoconstrictor effects, hypoxia, which contributes to the progression of PH, however, the survival rate of patients with PH and overweight or obesity is higher than with normal or reduced body weight. Diabetes mellitus and concomitant insulin resistance are associated with a high risk of hospitalization for right ventricular heart failure and mortality. The presence of PAH is associated with lower values of total cholesterol, low-density lipoprotein cholesterol (LDL-C), triglycerides, and probably high-density lipoprotein cholesterol (HDL-C). At the same time, higher levels of LDL-С and HDL-С in PAH and CTEPH determine a better prognosis of the disease.

All metabolic disorders considered have common mechanisms of influence on PH. Further study of their pathogenetic basis will make it possible to develop unified approaches to methods of their correction in patients with various types of pulmonary hypertension.

About the Authors

G. V. Schelkova
E.I. Chazov National Medical Research Center of cardiology
Russian Federation

Galina V.  Schelkova, Cand. of Sci. (Med.), Scientific expert Department, A.L. Myasnikov Scientific research institute of clinical cardiology

St. Academician Chazova, 15 a, Moscow 121552



S. Yu. Yarovoy
E.I. Chazov National Medical Research Center of cardiology
Russian Federation

Sergey Yu. Yarovoy, Cand. of Sci. (Med.), Hypertension Department, A.L. Myasnikov Scientific research institute of clinical cardiology

St. Academician Chazova, 15 a, Moscow 121552



E. O. Dinevich
E.I. Chazov National Medical Research Center of cardiology
Russian Federation

Ekaterina O. Dinevich, research assistant, Scientific expert Department, A.L. Myasnikov Scientific research institute of clinical cardiology

St. Academician Chazova, 15 a, Moscow 121552



I. E. Chazova
E.I. Chazov National Medical Research Center of cardiology
Russian Federation

Irina E. Chazova, Dr. of Sci. (Med.), Prof., Acad. Of RAS, A A.L. Myasnikov Scientific research institute of clinical cardiology

St. Academician Chazova, 15 a, Moscow 121552



References

1. Chazova I.E., Martynyuk T.V., Valieva Z.S., et al. Eurasian clinical guidelines on diagnosis and treatment of pulmonary hypertension. Eurasian heart journal. 2020;(1):78-122. (In Russ.) https://doi.org/10.38109/2225-1685-2020-1-78-122

2. Ruopp NF, Cockrill BA. Diagnosis and treatment of pulmonary arterial hypertension. JAMA. 2022;327(14):1379. https://doi.org/10.1001/jama.2022.4402

3. Frost AE, Badesch DB, Barst RJ, et al. The changing picture of patients with pulmonary arterial hypertension in the United States. Chest. 2011;139(1):128-137. https://doi.org/10.1378/chest.10-0075

4. Gall H, Felix JF, Schneck FK, et al. The giessen pulmonary hypertension registry: Survival in pulmonary hypertension subgroups. The Journal of Heart and Lung Transplantation. 2017;36(9):957-967. https://doi.org/10.1016/j.healun.2017.02.016

5. Oganov R.G., Simanenkov V.I., Bakulin I.G., Bakulina N.V., Barbarash O.L., Boytsov S.A., Boldueva S.A., Garganeeva N.P., Doshchitsin V.L., Karateev A.E., Kotovskaya Yu.V., Lila A.M., Lukyanov M.M., Morozova T.E., Pereverzev A.P., Petrova M.M., Pozdnyakov Yu.M., Syrov A.V., Tarasov A.V., Tkacheva O.N., Shalnova S.A. Comorbidities in clinical practice. Algorithms for diagnostics and treatment. Cardiovascular Therapy and Prevention. 2019;18(1):5-66. (In Russ.) https://doi.org/10.15829/1728-8800-2019-1-5-66

6. Poms AD, Turner M, Farber HW, Meltzer LA, McGoon MD. Comorbid conditions and outcomes in patients with pulmonary arterial hypertension. Chest. 2013;144(1):169-176. https://doi.org/10.1378/chest.11-3241

7. Avdeev S.N., Barbarash O.L., Bautin A.E., et al. 2020 Clinical practice guidelines for Pulmonary hypertension, including chronic thromboembolic pulmonary hypertension. Russian Journal of Cardiology. 2021;26(12):4683. (In Russ.) https://doi.org/10.15829/1560-4071-2021-4683

8. Recommendations for the management of patients with metabolic syndrome: clinical recommendations // Ministry of Health of the Russian Federation. – 2013. – 42 p. [Electronic resource]]. URL: http://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=2ahUKEwjuybvrh9DfAhURp4sKHcYnDJoQFjAAegQIChAC

9. Yu.P. Uspensky, Yu.V. Petrenko, Z.Kh. Gulunov et al. Metabolic syndrome. Textbook. – St. Petersburg: St. Petersburg State Pediatric Medical University, 2017. – 60 p. (In Russ.)

10. Weatherald J, Huertas A, Boucly A, et al. Association between BMI and obesity with survival in Pulmonary arterial hypertension. Chest. 2018;154(4):872-881. https://doi.org/10.1016/j.chest.2018.05.006

11. Min J, Feng R, Badesch D, et al. Obesity in pulmonary arterial hypertension. The Pulmonary Hypertension Association Registry. Annals of the American Thoracic Society. 2021;18(2):229-237. https://doi.org/10.1513/annalsats.202006-612oc

12. Sheu EG, Channick R, Gee DW. Improvement in severe pulmonary hypertension in obese patients after laparoscopic gastric bypass or sleeve gastrectomy. Surgical Endoscopy. 2015;30(2):633-637. https://doi.org/10.1007/s00464-015-4251-5

13. Vrigkou E, Vassilatou E, Dima E, Langleben D, Kotanidou A, Tzanela M. The role of thyroid disorders, obesity, diabetes mellitus and estrogen exposure as potential modifiers for pulmonary hypertension. Journal of Clinical Medicine. 2022;11(4):921. https://doi.org/10.3390/jcm11040921

14. Wahab A, Dey AK, Bandyopadhyay D, et al. Obesity, systemic hypertension, and pulmonary hypertension: A tale of three diseases. Current Problems in Cardiology. 2021;46(3):100599. https://doi.org/10.1016/j.cpcardiol.2020.100599

15. Ayinapudi K, Singh T, Motwani A, Le Jemtel TH, Oparil S. Obesity and pulmonary hypertension. Current Hypertension Reports. 2018;20(12). https://doi.org/10.1007/s11906-018-0899-2

16. Perrotta F, Nigro E, Mollica M, et al. Pulmonary hypertension and obesity: Focus on adiponectin. International Journal of Molecular Sciences. 2019;20(4):912. https://doi.org/10.3390/ijms20040912

17. Yenicesu M, Yilmaz MI, Caglar K, et al. Blockade of the renin-angiotensin system increases plasma adiponectin levels in type-2 diabetic patients with proteinuria. Nephron Clinical Practice. 2005;99(4):c115-c121. https://doi.org/10.1159/000083929

18. Wang M, Li Y, Zhou K, et al. Mineralocorticoid receptor blockade improves insulin sensitivity in the rat heart and a possible molecular mechanism. Cellular Physiology and Biochemistry. 2016;39(3):860-870. https://doi.org/10.1159/000447796

19. Rocha VZ, Libby P. Obesity, inflammation, and atherosclerosis. Nature Reviews Cardiology. 2009;6(6):399- 409. https://doi.org/10.1038/nrcardio.2009.55

20. Humbert M, Monti G, Brenot F, et al. Increased interleukin-1 and interleukin-6 serum concentrations in severe primary pulmonary hypertension. American Journal of Respiratory and Critical Care Medicine. 1995;151(5):1628-1631. https://doi.org/10.1164/ajrccm.151.5.7735624

21. Soon E, Holmes AM, Treacy CM, et al. Elevated levels of inflammatory cytokines predict survival in idiopathic and familial pulmonary arterial hypertension. Circulation. 2010;122(9):920-927. https://doi.org/10.1161/circulationaha.109.933762

22. Friedman SE, Andrus BW. Obesity and pulmonary hypertension: A review of Pathophysiologic Mechanisms. Journal of Obesity. 2012;2012:1-9. https://doi.org/10.1155/2012/505274

23. Abenhaim L, Moride Y, Brenot F, et al. Appetite-Suppressant Drugs and the risk of primary pulmonary hypertension. New England Journal of Medicine. 1996;335(9):609-616. https://doi.org/10.1056/nejm199608293350901

24. Nowbar S, Burkart KM, Gonzales R, et al. Obesity-associated hypoventilation in hospitalized patients: Prevalence, effects, and outcome. The American Journal of Medicine. 2004;116(1):1-7. https://doi.org/10.1016/j.amjmed.2003.08.022

25. Senaratna CV, Perret JL, Lodge CJ, et al. Prevalence of obstructive sleep apnea in the general population: A systematic review. Sleep Medicine Reviews. 2017;34:70-81. https://doi.org/10.1016/j.smrv.2016.07.002

26. Tatebe S, Sugimura K, Aoki T, et al. Multiple beneficial effects of balloon pulmonary angioplasty in patients with chronic thromboembolic pulmonary hypertension. Circulation Journal. 2016;80(4):980- 988. https://doi.org/10.1253/circj.cj-15-1212

27. McLean LL, Pellino K, Brewis M, Peacock A, Johnson M, Church AC. The obesity paradox in Pulmonary arterial hypertension: The Scottish perspective. ERJ Open Research. 2019;5(4):00241-02019. https://doi.org/10.1183/23120541.00241-2019

28. Zafrir B, Adir Y, Shehadeh W, Shteinberg M, Salman N, Amir O. The association between obesity, mortality and filling pressures in pulmonary hypertension patients; the “obesity paradox.” Respiratory Medicine. 2013;107(1):139-146. https://doi.org/10.1016/j.rmed.2012.10.019

29. Agarwal M, Agrawal S, Garg L, Lavie CJ. Relation between obesity and survival in patients hospitalized for pulmonary arterial hypertension (from a nationwide inpatient Sample Database 2003 to 2011). The American Journal of Cardiology. 2017;120(3):489-493. https://doi.org/10.1016/j.amjcard.2017.04.051

30. Pugh ME, Robbins IM, Rice TW, West J, Newman JH, Hemnes AR. Unrecognized glucose intolerance is common in pulmonary arterial hypertension. J Heart Lung Transplant . 2011 Aug;30(8):904-11. https://doi.org/10.1016/j.healun.2011.02.016

31. Simonneau G, Pepke-Zaba J, Mayer E, et al. Factors associated with diagnosis and operability of chronic thromboembolic pulmonary hypertension. Thrombosis and Haemostasis. 2013;110(07):83-91. https://doi.org/10.1160/th13-02-0097

32. Belly MJ, Tiede H, Morty RE, et al. HbA1c in Pulmonary arterial hypertension: A marker of prognostic relevance? The Journal of Heart and Lung Transplantation. 2012;31(10):1109-1114. https://doi.org/10.1016/j.healun.2012.08.014

33. Benson L, Brittain EL, Pugh ME, et al. Impact of diabetes on survival and right ventricular compensation in pulmonary arterial hypertension. Pulmonary Circulation. 2014;4(2):311-318. https://doi.org/10.1086/675994

34. Lazar MA. The humoral side of insulin resistance. Nature Medicine. 2006;12(1):43-44. https://doi.org/10.1038/nm0106-43

35. Williams JG, Morris AI, Hayter RC, Ogilvie CM. Respiratory responses of diabetics to hypoxia, hypercapnia, and exercise. Thorax. 1984;39(7):529-534. https://doi.org/10.1136/thx.39.7.529

36. Brett J; Schmidt AM; Yan SD; Zou YS; Weidman E; Pinsky D; Nowygrod R; Neeper M; Przysiecki C; Shaw A. Survey of the distribution of a newly characterized receptor for advanced glycation end products in tissues. Am J Pathol. 1993 Dec;143(6):1699-712. PMID: 8256857.

37. Lopez-Lopez JG, Moral-Sanz J, Frazziano G, et al. Diabetes induces pulmonary artery endothelial dysfunction by NADPH oxidase induction. American Journal of Physiology-Lung Cellular and Molecular Physiology. 2008 Nov;295(5):L727-32. https://doi.org/10.1152/ajplung.90354.2008

38. Bugger H, Abel ED. Molecular mechanisms of diabetic cardiomyopathy. Diabetologia. 2014;57(4):660- 671. https://doi.org/10.1007/s00125-014-3171-6

39. Mandavia CH, Aroor AR, DeMarco VG, Sowers JR. Molecular and metabolic mechanisms of cardiac dysfunction in diabetes. Life Sciences. 2013;92(11):601-608. https://doi.org/10.1016/j.lfs.2012.10.028

40. Zamanian RT, Hansmann G, Snook S, et al. Insulin resistance in pulmonary arterial hypertension. European Respiratory Journal. 2008;33(2):318-324. https://doi.org/10.1183/09031936.00000508

41. Hua H, Goldberg HJ, Fantus IG, Whiteside CI. High glucose–enhanced mesangial cell extracellular signal– regulated protein kinase activation and Α1(IV) collagen expression in response to endothelin-1. Diabetes. 2001;50(10):2376-2383. https://doi.org/10.2337/diabetes.50.10.2376

42. Di Paolo S; Gesualdo L; Ranieri E; Grandaliano G; Schena FP; High glucose concentration induces the overexpression of transforming growth factor-beta through the activation of a platelet-derived growth factor loop in human mesangial cells. The American journal of pathology. Am J Pathol. 1996 Dec;149(6):2095-106. PMID: 8952542.

43. Whitaker ME, Nair V, Sinari S, et al. Diabetes mellitus associates with increased right ventricular afterload and remodeling in pulmonary arterial hypertension. The American Journal of Medicine. 2018;131(6): 702. e7-702.e13. https://doi.org/10.1016/j.amjmed.2017.12.046

44. Lang IM, Palazzini M. The burden of Comorbidities in pulmonary arterial hypertension. European Heart Journal Supplements. 2019;21(Supplement_K). https://doi.org/10.1093/eurheartj/suz205

45. Abernethy AD, Stackhouse K, Hart S, et al. Impact of diabetes in patients with pulmonary hypertension. Pulmonary Circulation. 2015;5(1):117-123. https://doi.org/10.1086/679705

46. Li L, Huang W, Li K, et al. Metformin attenuates gefitinib-induced exacerbation of pulmonary fibrosis by inhibition of TGF-β signaling pathway. Oncotarget. 2015;6(41):43605-43619. https://doi.org/10.18632/oncotarget.6186

47. Sato N, Takasaka N, Yoshida M, et al. Metformin attenuates lung fibrosis development via nox4 suppression. Respiratory Research. 2016;17(1). https://doi.org/10.1186/s12931-016-0420-x

48. Ito K, Shimada J, Kato D, et al. Protective effects of preischemic treatment with pioglitazone, a peroxisome proliferator-activated receptor-γ ligand, on lung ischemia-reperfusion injury in rats. European Journal of Cardio-Thoracic Surgery. 2004;25(4):530-536. https://doi.org/10.1016/j.ejcts.2003.12.017

49. Cui W, Zhang S, Cai Z, et al. The antidiabetic agent glibenclamide protects airway hyperresponsiveness and inflammation in mice. Inflammation. 2014;38(2):835-845. https://doi.org/10.1007/s10753-014-9993-z

50. Han Y, Cho Y-E, Ayon R, et al. SGLT inhibitors attenuate no-dependent vascular relaxation in the pulmonary artery but not in the coronary artery. Am J Physiol Lung Cell Mol Physiol . 2015 Nov 1;309(9):L1027-36. https://doi.org/10.1152/ajplung.00167.2015

51. Ezhov M.V., Kukharchuk V.V., Sergienko i.V., et al. Disorders of lipid metabolism. Clinical Guidelines 2023. Russian Journal of Cardiology. 2023;28(5):5471. (In Russ.) https://doi.org/10.15829/1560-4071-2023-5471

52. Heresi GA, Aytekin M, Newman J, DiDonato J, Dweik RA. Plasma levels of high-density lipoprotein cholesterol and outcomes in Pulmonary arterial hypertension. American Journal of Respiratory and Critical Care Medicine. 2010;182(5):661-668. https://doi.org/10.1164/rccm.201001-0007oc

53. Al-Naamani N, Palevsky HI, Lederer DJ, et al. Prognostic significance of biomarkers in Pulmonary arterial hypertension. Annals of the American Thoracic Society. 2016;13(1):25-30. https://doi.org/10.1513/annalsats.201508-543oc

54. Jonas K, Kopeć G. HDL cholesterol as a marker of disease severity and prognosis in patients with pulmonary arterial hypertension. International Journal of Molecular Sciences. 2019;20(14):3514. https://doi.org/10.3390/ijms20143514

55. Khirfan G, Tejwani V, Wang X, et al. Plasma levels of high density lipoprotein cholesterol and outcomes in chronic thromboembolic pulmonary hypertension. PLoS One . 2018 May 29;13(5):e0197700. https://doi.org/10.1371/journal.pone.0197700

56. Khirfan G, Li M, Wang X, DiDonato JA, Dweik RA, Heresi GA. Abnormal levels of apolipoprotein a‐i in chronic thromboembolic pulmonary hypertension. Pulmonary Circulation. 2021;11(2):1-7. https://doi.org/10.1177/20458940211010371

57. Park SY, Lee SM, Shin JW, et al. Epidemiology of chronic thromboembolic pulmonary hypertension in Korea: Results from the Korean Registry. The Korean Journal of Internal Medicine. 2016;31(2):305-312. https://doi.org/10.3904/kjim.2014.122

58. Huang J, An Q, Zhang C-L, He L, Wang L. Decreased low density lipoprotein and the presence of pulmonary arterial hypertension among newly diagnosed drug naïve patients with systemic lupus erythematosus: D dimer as a mediator. Exp Ther Med . 2022 Jul 27;24(3):595. https://doi.org/10.3892/etm.2022.11531

59. Smits AJ, Botros L, Mol MAE, et al. A systematic review with meta-analysis of biomarkers for detection of pulmonary arterial hypertension. ERJ Open Research. 2022;8(2):00009-02022. https://doi.org/10.1183/23120541.00009-2022

60. Kopeć G, Waligóra M, Tyrka A, et al. Low-density lipoprotein cholesterol and survival in Pulmonary arterial hypertension. Scientific Reports. 2017 Feb 15:7:41650. https://doi.org/10.1038/srep41650

61. Maiuolo J, Oppedisano F, Gratteri S, Muscoli C, Mollace V. Regulation of uric acid metabolism and excretion. International Journal of Cardiology. 2016;213:8-14. https://doi.org/10.1016/j.ijcard.2015.08.109

62. Hoeper M, Hohlfeld J, Fabel H. Hyperuricaemia in patients with right or left heart failure. European Respiratory Journal. 1999;13(3):682-685. https://doi.org/10.1183/09031936.99.13368299

63. Feig DI, Nakagawa T, Ananth Karumanchi S, et al. Hypothesis: Uric acid, nephron number, and the pathogenesis of essential hypertension. Kidney International. 2004;66(1):281-287. https://doi.org/10.1111/j.1523-1755.2004.00729.x

64. Khosla UM, Zharikov S, Finch JL, et al. Hyperuricemia induces endothelial dysfunction. Kidney International. 2005;67(5):1739-1742. https://doi.org/10.1111/j.1523-1755.2005.00273.x

65. Sautin YY, Johnson RJ. Uric acid: The oxidant-antioxidant paradox. Nucleosides, Nucleotides and Nucleic Acids. 2008;27(6-7):608-619. https://doi.org/10.1080/15257770802138558

66. Zharikov SI, Swenson ER, Lanaspa M, Block ER, Patel JM, Johnson RJ. Could Uric acid be a modifiable risk factor in subjects with pulmonary hypertension? Medical Hypotheses. 2010;74(6):1069-1074. https://doi.org/10.1016/j.mehy.2009.12.023

67. Leyva F, Anker S, Swan JW, et al. Serum uric acid as an index of impaired oxidative metabolism in chronic heart failure. EurHeart J 1997; 18: 858–865. https://doi.org/10.1093/oxfordjournals.eurheartj.a015352

68. Nagaya N, Uematsu M, Satoh T, et al. Serum uric acid levels correlate with the severity and the mortality of primary pulmonary hypertension. American Journal of Respiratory and Critical Care Medicine. 1999;160(2):487-492. https://doi.org/10.1164/ajrccm.160.2.9812078

69. Voelkel MA, Wynne KM, Badesch DB, Groves BM, Voelkel NF. Hyperuricemia in severe pulmonary hypertension. Chest. 2000;117(1):19-24. https://doi.org/10.1378/chest.117.1.19

70. Dhaun N, Vachiery J-L, Benza RL, et al. Endothelin antagonism and uric acid levels in pulmonary arterial hypertension: Clinical Associations. The Journal of Heart and Lung Transplantation. 2014;33(5):521-527. https://doi.org/10.1016/j.healun.2014.01.853

71. Chrysohoou C, Pitsavos C, Barbetseas J, et al. Serum uric acid levels correlate with left atrial function and systolic right ventricular function in patients with newly diagnosed heart failure: The Hellenic Heart Failure Study. Congestive Heart Failure. 2008;14(5):229-233. https://doi.org/10.1111/j.1751-7133.2008.00005.x

72. Belostotsky R, Ben-Shalom E, Rinat C, et al. Mutations in the mitochondrial seryl-trna synthetase cause hyperuricemia, pulmonary hypertension, renal failure in infancy and alkalosis, Hupra syndrome. The American Journal of Human Genetics. 2011;88(2):193-200. https://doi.org/10.1016/j.ajhg.2010.12.010

73. Linnankivi T, Neupane N, Richter U, Isohanni P, Tyynismaa H. Splicing defect in mitochondrial seryltrna synthetase gene causes progressive spastic paresis instead of HUPRA syndrome. Human Mutation. 2016;37(9):884-888. https://doi.org/10.1002/humu.23021

74. Uk Kang T, Park KY, Kim HJ, Ahn HS, Yim S-Y, Jun J-B. Association of hyperuricemia and pulmonary hypertension: A systematic review and meta-analysis. Modern Rheumatology. 2018;29(6):1031-1041. https://doi.org/10.1080/14397595.2018.1537555

75. Yan L, Huang Z, Zhao Z, et al. The prognostic impact of serum uric acid on disease severity and 5-year mortality in patients with idiopathic pulmonary artery hypertension. Frontiers in Medicine. 2022;9. https://doi.org/10.3389/fmed.2022.805415

76. Chazova, I.E. Pulmonary hypertension: monograph/ ed. I.E. Chazova, T.V. Martynyuk. – Moscow: Praktika, 2015. – 928 p.

77. Zhang T, Pope JE. Cardiovascular effects of urate-lowering therapies in patients with chronic gout: A systematic review and meta-analysis. Rheumatology. 2017;56(7):1144-1153. https://doi.org/10.1093/rheumatology/kex065


Review

For citations:


Schelkova G.V., Yarovoy S.Yu., Dinevich E.O., Chazova I.E. Pulmonary hypertension and metabolic disorders. Systemic Hypertension. 2024;21(1):37-46. (In Russ.) https://doi.org/10.38109/2075-082X-2024-1-37-46

Views: 540


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2075-082X (Print)
ISSN 2542-2189 (Online)