Preview

Systemic Hypertension

Advanced search

Impact of a new coronavirus infection on the level of inflammatory, haemostasis markers and microcirculatory parameters of patients with arterial hypertension

https://doi.org/10.38109/2075-082X-2024-3-31-39

Abstract

   Relevance. The COVID-19 pandemic and its consequences have significantly affected the health of the population as a whole. Persons who have undergone coronavirus infection against the background of chronic cardiovascular diseases and obesity deserve special attention.

   Aim. To study and compare the main indicators of carbohydrate and lipid metabolism the level of inflammatory and haemostasis markers, microvascular changes in obesity AH patients and in AH patients with normal body weight 1 month after a new coronavirus infection in moderate to severe form.

   Materials and methods. The study included 87 patients of both sexes, aged from 18 to 55 years, from which three groups were formed: the first group included people with AH and normal body weight (BMI<25 kg/m²) who had undergone COVID-19 within a month, the second group included people with AH and obesity (BMI≥30 kg/m²) who had undergone COVID-19 within a month, the control group consisted of 20 people with AH and obesity without COVID-19. The parameters of height, weight, waist circumference, and BMI were assessed in all subjects. The parameters of lipid profile, glucose level were determined, inflammatory markers and haemostasis parameters. All participants underwent laser Doppler flowmetry (LDF) on the forearm with constrictor and dilator functional tests, and single-photon emission computed tomography (SPECT) in combination with x-ray computed tomography (SPECT/CT).

   Results. Patients of groups 1 and 2 naturally differed from each other in anthropometric indicators. Lipid and carbohydrate metabolism rates were also significantly higher in group 2 patients compared to group 1 patients (p < 0.05). The CRP level in the group of people with hypertension and obesity who underwent COVID-19 was significantly higher than in people with hypertension without obesity (p < 0.001) and than in people with hypertension and obesity without a history of COVID-19. When comparing microcirculation parameters by LDF, there was a decrease in tissue hemoperfusion (M), blood flow reserve (RK) in all three groups (p < 0.001), the most pronounced dysfunction of neurogenic and myogenic blood flow regulation was detected in the group of people with hypertension and
obesity who underwent COVID-19.

   Conclusion. The study of microcirculation indicators by LDF method in persons with hypertension and obesity after suffering a coronavirus infection indicates the predominance of the spastic type of microcirculation, which, together with an increase in the levels of inflammatory markers, indicates a higher risk of thrombosis and cardiovascular complications, requiring more careful monitoring and treatment of this group of patients.

About the Authors

I. O. Kokaeva
E.I. Chazov National Medical Research Center of cardiology
Russian Federation

Izolda O. Kokaeva, cardiologist, graduate Student

A.L. Myasnikov Institute of Clinical Cardiology

121552; St. Academician Chazova, 15 a; Moscow

tel: +7 (925) 428-88-83



Yu. V. Zhernakova
E.I. Chazov National Medical Research Center of cardiology
Russian Federation

Yuliya V. Zhernakova, Dr. of Sci. (Med.), Prof., Scientific Secretary

A.L. Myasnikov Institute of Clinical Cardiology

121552; St. Academician Chazova, 15 a; Moscow

tel.: +7 (495) 414-63-00



N. V. Blinova
E.I. Chazov National Medical Research Center of cardiology
Russian Federation

Nataliya V. Blinova, Cand. of Sci. (Med.), Senior Researcher

A.L. Myasnikov Institute of Clinical Cardiology; Department of Hypertension

121552; St. Academician Chazova, 15 a; Moscow

tel.: +7 (495) 414-61-86;



References

1. WHO COVID-19 Coronavirus Dashboard, https://covid19.who.int/, February 2024, last accessed

2. Liu, P. P., Blet, A., Smyth, D., & Li, H. (2020). The science underlying COVID-19: Implications for the cardiovascular system. Circulation, 2020 Jul 7;142(1):68-78. doi: 10.1161/circulationaha.120.047549

3. Yelin, D., Wirtheim, E., Vetter, P., Kalil, A. C., Bruchfeld, J., Runold, M., Guaraldi, G., Mussini, C., Gudiol, C., Pujol, M., Bandera, A., Scudeller, L., Paul, M., Kaiser, L., & Leibovici, L. (2020). Long-term consequences of COVID-19: Research needs. The Lancet Infectious Diseases. 2020 Oct;20(10):1115-1117. doi: 10.1016/s1473-3099(20)30701-5

4. Ackermann, M., Verleden, S. E., Kuehnel, M., Haverich, A., Welte, T., Laenger, F., Vanstapel, A., Werlein, C., Stark, H., Tzankov, A., Li, W. W., Li, V. W., Mentzer, S. J., & Jonigk, D. (2020). Pulmonary vascular endothelialitis, thrombosis, and angiogenesis in Covid-19. New England Journal of Medicine. 2020 Jul 9;383(2):120-128. doi: 10.1056/NEJMoa2015432

5. Lipowsky HH, Gao L, Lescanic A. Shedding of the endothelial glycocalyx in arterioles, capillaries, and venules and its effect on capillary hemodynamics during inflammation. Am J Physiol Heart Circ Physiol. 2011 Dec;301(6):H2235-45. doi: 10.1152/ajpheart.00803.2011

6. Teuwen LA, Geldhof V, Pasut A, Carmeliet P. COVID-19: the vasculature unleashed. Nat Rev Immunol. 2020 Jul;20(7):389-391. Erratum in: Nat Rev Immunol. 2020 Jul;20(7):448. doi: 10.1038/s41577-020-0343-0

7. Fox SE, Li G, Akmatbekov A, Harbert JL, Lameira FS, Brown JQ, Vander Heide RS. Unexpected Features of Cardiac Pathology in COVID-19 Infection. Circulation. 2020 Sep 15;142(11):1123-1125. doi: 10.1161/circulationaha.120.049465

8. Varga, Z., Flammer, A. J., Steiger, P., Haberecker, M., Andermatt, R., Zinkernagel, A. S., Mehra, M. R., Schuepbach, R. A., Ruschitzka, F., & Moch, H. (2020). Endothelial cell infection and endotheliitis in COVID-19. The Lancet. 2020 May 2;395(10234):1417-1418. doi: 10.1016/s0140-6736(20)30937-5

9. Armulik, A., Genove, G., & Betsholtz, C. (2011). Pericytes: Developmental, physiological, and pathological perspectives, problems, and promises. Developmental Cell. 2011 Aug 16;21(2):193-215. doi: 10.1016/j.devcel.2011.07.001

10. Eltzschig, H. K., & Carmeliet, P. (2011). Hypoxia and Inflammation. New England Journal of Medicine. 2011 Feb 17;364(7):656-65. doi: 10.1056/nejmra0910283

11. Ferrario CM, Jessup J, Chappell MC, Averill DB, Brosnihan KB, Tallant EA, Diz DI, Gallagher PE. Effect of angiotensin-converting enzyme inhibition and angiotensin II receptor blockers on cardiac angiotensin-converting enzyme 2. Circulation. 2005 May 24;111(20):2605-10. doi: 10.1161/circulationaha.104.510461

12. Capone, C., Faraco, G., Park, L., Cao, X., Davisson, R. L., & Iadecola, C. (2011). The cerebrovascular dysfunction induced by slow pressor doses of angiotensin II precedes the development of hypertension. American Journal of Physiology-Heart and Circulatory Physiology. 2011 Jan;300(1):H397-407. doi: 10.1152/ajpheart.00679.2010

13. Kawamura H, Kobayashi M, Li Q, Yamanishi S, Katsumura K, Minami M, Wu DM, Puro DG. Effects of angiotensin II on the pericyte-containing microvasculature of the rat retina. The Journal of Physiology. 5 2004 Dec 15;561(Pt 3):671-683. doi: 10.1113/jphysiol.2004.073098

14. Burel-Vandenbos, F., Cardot-Leccia, N., & Passeron, T. (2020). Apoptosis and pericyte loss in alveolar capillaries in COVID-19 infection: Choice of markers matters. Author's reply. Intensive Care Medicine. 2020 Oct;46(10):1967-1968 doi: 10.1007/s00134-020-06220-1

15. Kato, K., Diéguez-Hurtado, R., Park, D. Y., Hong, S. P., Kato-Azuma, S., Adams, S., Stehling, M., Trappmann, B., Wrana, J. L., Koh, G. Y., & Adams, R. H. (2018). Pulmonary pericytes regulate lung morphogenesis. Nature Communications. 2018 Jun 22;9(1):2448. doi: 10.1038/s41467-018-04913-2

16. Ackermann M, Verleden SE, Kuehnel M, Haverich A, Welte T, Laenger F, Vanstapel A, Werlein C, Stark H, Tzankov A, Li WW, Li VW, Mentzer SJ, Jonigk D. Pulmonary Vascular Endothelialitis, Thrombosis, and Angiogenesis in Covid-19. New England Journal of Medicine. 2020 Jul 9;383(2):120-128. doi: 10.1056/NEJMoa2015432

17. Fox, S. E., Li, G., Akmatbekov, A., Harbert, J. L., Lameira, F. S., Brown, J. Q., & Vander Heide, R. S. (2020). Unexpected features of cardiac pathology in COVID-19 infection. Circulation. 2020 Sep 15;142(11):1123-1125.. doi: 10.1161/circulationaha.120.049465

18. Isakson BE, Damon DN, Day KH, Liao Y, Duling BR. Connexin40 and connexin43 in mouse aortic endothelium: evidence for coordinated regulation. American Journal of Physiology-Heart and Circulatory Physiology. 2006 Mar;290(3):H1199-1205. doi: 10.1152/ajpheart.00945.2005

19. Segal SS. Regulation of blood flow in the microcirculation. Microcirculation. 2005 Jan-Feb;12(1):33-45. doi: 10.1080/10739680590895028

20. Pries AR, Höpfner M, le Noble F, Dewhirst MW, Secomb TW. The shunt problem: control of functional shunting in normal and tumour vasculature. Nat Rev Cancer. 2010 Aug;10(8):587-93. doi: 10.1038/nrc2895

21. Wang D, Hu B, Hu C, Zhu F, Liu X, Zhang J, Wang B, Xiang H, Cheng Z, Xiong Y, Zhao Y, Li Y, Wang X, Peng Z. Clinical Characteristics of 138 Hospitalized Patients With 2019 Novel Coronavirus-Infected Pneumonia in Wuhan, China. JAMA. 2020 Mar 17;323(11):1061-1069. doi: 10.1001/jama.2020.1585

22. Carsana, L., Sonzogni, A., Nasr, A., Rossi, R. S., Pellegrinelli, A., Zerbi, P., Rech, R., Colombo, R., Antinori, S., Corbellino, M., Galli, M., Catena, E., Tosoni, A., Gianatti, A., & Nebuloni, M. (2020). Pulmonary postmortem findings in a series of COVID-19 cases from northern Italy: a two-centre descriptive study. The Lancet Infectious Diseases. 2020 Oct;20(10):1135-1140. doi: 10.1016/s1473-3099(20)30434-5

23. Hanley, B., Naresh, K. N., Roufosse, C., Nicholson, A. G., Weir, J., Cooke, G. S., Thursz, M., Manousou, P., Corbett, R., Goldin, R., Al-Sarraj, S., Abdolrasouli, A., Swann, O. C., Baillon, L., Penn, R., Barclay, W. S., Viola, P., & Osborn, M. (2020). Histopathological findings and viral tropism in UK patients with severe fatal COVID-19: a post-mortem study. The Lancet Microbe. 2020 Oct;1(6):e245-e253 doi: 10.1016/s2666-5247(20)30115-4

24. Wani K, AlHarthi H, Alghamdi A, Sabico S, Al-Daghri NM. Role of NLRP₃ inflammasome activation in obesity-mediated metabolic disorders. Int J Environ Res Public Health. 2021;18(2):511. doi: 10.3390/ijerph18020511

25. Mastrocola R, Penna C, Tullio F, et al. Pharmacological inhibition of NLRP₃ inflammasome attenuates myocardial ischemia/reperfusion injury by activation of RISK and mitochondrial pathways. Oxid Med Cell Longev. 2016;2016:1–11. doi: 10.1155/2016/5271251

26. Hotamisligil GS. Inflammation, metaflammation and immunometabolic disorders. Nature. 2017;542(7640):177–185. doi: 10.1038/nature21363

27. Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395(10223):497–506. doi: 10.1016/S0140-6736(20)30183-5

28. Hill JH, Solt C, Foster MT. Obesity associated disease risk: the role of inherent differences and location of adipose depots. Horm Mol Biol Clin Investig. 2018;33(2). doi: 10.1515/hmbci-2018-0012

29. Virdis A, Masi S, Colucci R, et al. Microvascular endothelial dysfunction in patients with obesity. Curr Hypertens Rep. 2019;21(4). doi: 10.1007/s11906-019-0930-2

30. Varsamis P, Walther G, Share B, et al. Transient endothelial dysfunction induced by sugar-sweetened beverage consumption may be attenuated by a single bout of aerobic exercise. Microvasc Res. 2018;115:8–11. doi: 10.1016/j.mvr.2017.07.003

31. Hellmann M, Roustit M, Gaillard-Bigot F, Cracowski JL. Cutaneous iontophoresis of treprostinil, a prostacyclin analog, increases microvascular blood flux in diabetic malleolus area. Eur J Pharmacol. 2015;758:123–128. doi: 10.1016/j.ejphar.2015.03.066

32. Cordovil I, Huguenin G, Rosa G, et al. Evaluation of systemic microvascular endothelial function using laser speckle contrast imaging. Microvasc Res. 2012;83(3):376–379. doi: 10.1016/j.mvr.2012.01.004

33. Cracowski JL, Roustit M. Current methods to assess human cutaneous blood flow: an updated focus on laser-based-techniques. Microcirculation. 2016;23(5):337–344. doi: 10.1111/micc.12257

34. Holowatz LA, Thompson-Torgerson CS, Kenney WL. The human cutaneous circulation as a model of generalized microvascular function. J Appl Physiol. 2008;105(1):370–372. doi: 10.1152/japplphysiol.00858.2007

35. Iredahl F, Löfberg A, Sjöberg F, Farnebo S, Tesselaar E. Non-invasive measurement of skin microvascular response during pharmacological and physiological provocations. PLoS One. 2015;10(8):e0133760. doi: 10.1371/journal.pone.0133760

36. Tur E, Yosipovitch G, Bar-On Y. Skin reactive hyperemia in diabetic patients: a study by laser Doppler flowmetry. Diabetes Care. 1991;14(11):958–962. doi: 10.1046/j.1365-2362.2003.01179.x

37. IJzerman RG, De Jongh RT, Beijk MAM, et al. Individuals at increased coronary heart disease risk are characterized by an impaired microvascular function in skin. Eur J Clin Invest. 2003;33(7):536–542. doi: 10.1046/j.1365-2362.2003.01179.x

38. Yamamoto-Suganuma R, Aso Y. Relationship between post-occlusive forearm skin reactive hyperaemia and vascular disease in patients with Type 2 diabetes - A novel index for detecting micro- and macrovascular dysfunction using laser Doppler flowmetry. Diabet Med. 2009;26(1):83–88. doi: 10.1111/j.1464-5491.2008.02609.x

39. Ijzerman Rg, Serne EH, Van Weissenbruch MH, De Jongh RT, Stehouwer CDA. Cigarette smoking is associated with an acute impairment of microvascular function in humans. Clin Sci. 2003;104(3):247–252. doi: 10.1042/CS20020318

40. Halcox JPJ, Schenke WH, Zalos G, et al. Prognostic value of coronary vascular endothelial dysfunction. Circulation. 2002;106(6):653–658. doi: 10.1161/01.cir.0000025404.78001.d8

41. Francischetti EA, Tibirica E, Da Silva Eg, Rodrigues E, Celoria BM, De Abreu Vg. Skin capillary density and microvascular reactivity in obese subjects with and without metabolic syndrome. Microvasc Res. 2011;81(3):325–330. doi: 10.1016/j.mvr.2011.01.002

42. Balanova Yu.A., Shalnova S.A., Imaeva A.E., Kapustina а.V., Muromtseva G.A., Evstifeeva S.V., Tarasov V.I., Redko A.N., Viktorova I.A., Prishchepa N.N., Yakushin S.S., Boytsov S.A., Drapkina O.M. Prevalence, Awareness, Treatment and Control of Hypertension in Russian Federation (Data of Observational ESSERF-2 Study). Rational Pharmacotherapy in Cardiology. 2019;15(4):450-466. (In Russ.). doi: 10.20996/1819-6446-2019-15-4-450-466

43. Levy BI, Ambrosio G, Pries AR, Struijker-Boudier HA. Microcirculation in hypertension: a new target for treatment? Circulation. 2001 Aug 7;104(6):735-40. PMID: 11489784. doi: 10.1161/hc3101.091158

44. Laser Doppler flowmetry of blood microcirculation: Manual for physicians / edited by A. I. Krupatkin, V. V. Sidorov. – Moscow: Medicine: Shiko, 2005. – 254 p.: ill., table; 22 cm; ISBN 5-225-04221-X: 1000 (In Russ.)

45. Lai YJ, Liu SH, Manachevakul S, Lee TA, Kuo CT, Bello D. Biomarkers in long COVID-19 : A systematic review. Front Med (Lausanne). 2023 Jan 20;10:1085988. PMID: 36744129; PMCID: PMC9895110. doi: 10.3389/fmed.2023.1085988

46. Petelina T.I., Garanina V.D., Avdeeva K.S. , Valeeva K.S. , Zhmurov D.V., Zhmurov V.A., Gapon L.I., Kapustina A.A. Dynamics of laboratory parameters in patients with arterial hypertension who underwent COVID-19-associated pneumonia. Klinicheskaya Laboratornaya Diagnostika (Russian Clinical Laboratory Diagnostics). 2024;69(4):108-116 (in Russ.). doi: 10.51620/0869-2084-2024-69-4-108-116

47. Kowalik M, Myśliński W, Mosiewicz J. Cutaneous microcirculation reactivity in patients with arterial hypertension, taking into account intake of anti-hypertensive drugs. Ann Agric Environ Med. 2022 Dec 27;29(4):582-587. Epub 2022 Dec 19. PMID: 36583327. doi: 10.26444/aaem/157146

48. Jung F, Pindur g, Ohlmann P. Microcirculation in hypertensive patients. Biorheology. 2013;50(5–6):241–55. doi: 10.3233/BIR-130645

49. Scalia R. The microcirculation in adipose tissue inflammation. Rev Endocr Metab Disord. 2013;14(1):69-76. doi: 10.1007/s11154-013-9236-x

50. Muris DM, Houben AJ, Schram MT, Stehouwer CD. Microvascular dysfunction: an emerging pathway in the pathogenesis of obesity-related insulin resistance. Rev Endocr Metab Disord. 2013;14(1):29-38. doi: 10.1007/s11154-012-9231-7

51. Scalia R. The microcirculation in adipose tissue inflammation. Rev Endocr Metab Disord. 2013;14(1):69-76. doi: 10.1007/s11154-013-9236-x

52. Muris DM, Houben AJ, Schram MT, Stehouwer CD. Microvascular dysfunction: an emerging pathway in the pathogenesis of obesity-related insulin resistance. Rev Endocr Metab Disord. 2013;14(1):29-38. doi: 10.1007/s11154-012-9231-7

53. Celik T., Balta S., Karaman M., Ahmet Ay S., Demirkol S., Ozturk C., Dinc M., Unal H.U., Yilmaz M.I., Kilic S., et al. Endocan, a novel marker of endothelial dysfunction in patients with essential hypertension: Comparative effects of amlodipine and valsartan. Blood Press. 2015;24:55–60. PMID: 25390761. doi: 10.3109/08037051.2014.972816

54. Savoia C., grassi g. Exercise activity and endothelial function: The uprising role of endothelial progenitor cells in vascular protection. J. Hypertens. 2012;30:2083–2084. PMID: 23052045. doi: 10.1097/HJH.0b013e32835a0d31

55. Korolev AI, Fedorovich AA, gorshkov AYu, et al. Skin microvascular change in men with normal arterial pressure depending on body mass index. Russian Journal of Preventive Medicine. 2020;23(5):144-151. (In Russ.) doi: 10.17116/profmed202023051144


Review

For citations:


Kokaeva I.O., Zhernakova Yu.V., Blinova N.V. Impact of a new coronavirus infection on the level of inflammatory, haemostasis markers and microcirculatory parameters of patients with arterial hypertension. Systemic Hypertension. 2024;21(3):31-39. (In Russ.) https://doi.org/10.38109/2075-082X-2024-3-31-39

Views: 195


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2075-082X (Print)
ISSN 2542-2189 (Online)