Russian medical society expert consensus on arterial hypertension: arterial hypertension and Post-COVID syndrome
https://doi.org/10.38109/2075-082X-2022-3-5-13
Abstract
The COVID-19 pandemic triggered a second pandemic, "post-COVID", in people with persistent symptoms after an acute period of coronavirus infection. Most coronavirus patients fully recovered on average within two weeks, but about one in ten people feel long-term symptoms, such as respiratory, cardiovascular, nervous and psychological. Post-COVID symptoms are disparate, various and difficult to interpret. There are no standardized diagnostic methods and generally accepted criteria for verifying post-COVID syndrome now. WHO presented a universal definition of post-COVID syndrome or post-COVID conditions in October 2021. Blood pressure should be observed in post-COVID syndrome due to high prevalence of hypertension in patients with COVID-19. Epidemiology, risk factors and pathophysiology of post-COVID syndrome presents in expert’s consensus of Russian Society of Hypertension. The mechanisms of impairment to the cardiovascular system were analyzed. Particular attention is paid to the clinical features and manifestations of hypertension in post-COVID syndrome, to pathophysiological mechanisms of blood pressure destabilization and further treatment strategy.
About the Authors
I. E. ChazovaRussian Federation
Irina E. Chazova, Dr. Sci. (Med.), Prof., Acad. RAS, A.L. Myasnikov Institute of Clinical Cardiology
3rd Cherepkovskaya str., 15a, Moscow 121552
N. V. Blinova
Russian Federation
Natalia V. Blinova, Cand. Sci. (Med.), Senior Researcher, Department of Hypertension
3rd Cherepkovskaya str., 15a, Moscow 121552
J. V. Zhernakova
Russian Federation
Yulia V. Zhernakova, Dr. Sci. (Med.), Scientific Secretary, A.L. Myasnikov Institute of Clinical Cardiology
3rd Cherepkovskaya str., 15a, Moscow 121552
O. A. Kisliak
Russian Federation
Oksana A. Kislyak, Dr. Sci. (Med.), Prof., Head of the Department of Faculty Therapy
Ostrovitianov str. 1, Moscow, 117997
V. A. Nevzorova
Russian Federation
Vera A. Nevzorova, Dr. med. Sciences, prof., Director
Ostryakov Ave., 2, Vladivostok 690002, Primorsky Territory
M. P. Savenkov
Russian Federation
Mikhail P. Savenkov, Dr. Sci. (Med.), prof., Head of the Department of Clinical Functional Diagnostics
Ostrovitianov str. 1, Moscow, 117997
E. V. Oshchepkova
Russian Federation
Elena V. Oshchepkova, Dr. Sci. (Med.), prof., Chief Researcher, Department of Hypertension, A.L. Myasnikov Institute of Clinical Cardiology
3rd Cherepkovskaya str., 15a, Moscow 121552
O. D. Ostroumova
Russian Federation
Olga D. Ostroumova, Dr. Sci. (Med.), Prof., Head of the Department of Therapy and Polymorbid Pathology
st. Barrikadnaya, 2/1, build. 1, Moscow 125993
S. A. Boytsov
Russian Federation
Sergey A. Boytsov, acad. RAS, Dr. Sci. (Med.), prof., General Director; Head of the Department of Polyclinic Therapy
3rd Cherepkovskaya str., 15a, Moscow 121552
st. Delegatskaya, 20, build. 1, Moscow 127473
References
1. WHO Coronavirus (COVID-19) Dashboard. https://covid19.who.int/
2. COVID-19 rapid guideline: managing the long-term effects of COVID-19. London: National Institute for Health and Care Excellence (NICE); 2020 Dec 18. PMID: 33555768.
3. Fernández-de-Las-Peñas C., Palacios-Ceña D., Gómez-Mayordomo V. et al. Defining Post-COVID Symptoms (Post-Acute COVID, Long COVID, Persistent Post-COVID): An Integrative Classification. Int J Environ Res Public Health. 2021 Mar 5;18(5):2621. https://doi:10.3390/ijerph18052621
4. Fernández-de-Las-Peñas C., Florencio L.L., Gómez-Mayordomo V. et al. Proposed integrative model for post-COVID symptoms. Diabetes Metab Syndr. 2021 Jul-Aug;15(4):102159. Epub 2021 Jun 1. https://doi.org/10.1016/j.dsx.2021.05.032
5. Diaz Janet V. and Joan B. Soriano. A Delphi consensus to advance on a Clinical Case Definition for Post COVID-19 condition: A WHO protocol. (2021) https://doi.org/10.21203/rs.3.pex-1480/v1
6. A clinical case definition of post COVID-19 condition by a Delphi consensus, 6 October 2021. http://WHO/2019-nCoV/Post_COVID-19_condition/Clinical_case_definition/2021.1
7. https://www.who.int/srilanka/news/detail/16-10-2021-post-covid-19-condition
8. Sivan M., Rayner C., Delaney B. Fresh evidence of the scale and scope of long covid. BMJ. 2021 Apr 1;373:n853. https://doi.org/10.1136/bmj.n853
9. Chopra V., Flanders S.A., O'Malley M. et al. Sixty-Day Outcomes Among Patients Hospitalized With COVID-19. Ann Intern Med. 2021 Apr;174(4):576-578. Epub 2020 Nov 11. https://doi.org/10.7326/M20-5661
10. Lopez-Leon S., Wegman-Ostrosky T., Perelman C. et al. More than 50 Long-term effects of COVID-19: a systematic review and meta-analysis. medRxiv [Preprint]. 2021 Jan 30:2021.01.27.21250617. Update in: Sci Rep. 2021 Aug 9;11(1):16144. https://doi.org/10.1101/2021.01.27.21250617
11. Becker R.C. COVID-19 and its sequelae: a platform for optimal patient care, discovery and training. J Thromb Thrombolysis. 2021 Apr;51(3):587-594. Epub 2021 Jan 27. https://doi.org/10.1007/s11239-021-02375-w
12. Fernández-de-Las-Peñas C., Palacios-Ceña D., Gómez-Mayordomo V. et al. Prevalence of post-COVID-19 symptoms in hospitalized and non-hospitalized COVID-19 survivors: A systematic review and meta-analysis. Eur J Intern Med. 2021 Oct;92:55-70. Epub 2021 Jun 16. https://doi.org/10.1016/j.ejim.2021.06.009
13. Salamanna F., Veronesi F., Martini L. et al. Post-COVID-19 Syndrome: The Persistent Symptoms at the Post-viral Stage of the Disease. A Systematic Review of the Current Data. Front Med (Lausanne). 2021 May 4;8:653516. https://doi.org/10.3389/fmed.2021.653516
14. Halpin S.J., McIvor C., Whyatt G. et al. Postdischarge symptoms and rehabilitation needs in survivors of COVID-19 infection: A cross-sectional evaluation. J Med Virol. 2021 Feb;93(2):1013-1022. Epub 2020 Aug 17. https://doi.org/10.1002/jmv.26368
15. Taboada M., Cariñena A., Moreno E. et al. Post-COVID-19 functional status six-months after hospitalization. J Infect. 2021 Apr;82(4):e31-e33. Epub 2020 Dec 26. https://doi:10.1016/j.jinf.2020.12.022
16. Stavem K., Ghanima W., Olsen M.K. et al. Persistent symptoms 1.5-6 months after COVID-19 in non-hospitalised subjects: a population-based cohort study. Thorax. 2021 Apr;76(4):405-407. Epub 2020 Dec 3. https://doi:10.1136/thoraxjnl-2020-216377
17. Moreno-Pérez O., Merino E., Leon-Ramirez J.M. et al. COVID19-ALC research Post-acute COVID-19 Syndrome. Incidence and risk factors: a Mediterranean cohort study. J Infect. 2021 Mar;82(3):378-383. Epub 2021 Jan 12. https://doi:10.1016/j.jinf.2021.01.004
18. Dennis A., Wamil M., Alberts J. et al.; COVERSCAN study investigators. Multiorgan impairment in low-risk individuals with post-COVID-19 syndrome: a prospective, community-based study. BMJ Open. 2021 Mar 30;11(3):e048391. https://doi:10.1136/bmjopen-2020-048391
19. Mohanty A., Kabi A., Mohanty A.P. et al. Laboratory diagnosis of COVID-19 infection: Issues and Challenges: An Indian Perspective; Journal of Advances in Medicine and Medical Research. 2020; 32(14):10-17
20. Mohanty A., Kabi A., Kumar S. et al. Role of rapid antigen test in the diagnosis of COVID19 in India. Journal of Advances in Medicine and Medical Research 2020; 32(18):77-80. https://doi:10.9734/jammr/2020/v32i1830657
21. Antonelli M., Pujol J.C., Spector T.D. et al. Risk of long COVID associated with delta versus omicron variants of SARS-CoV-2. The Lancet. 2022;399:2263–4. https://doi:10.1016/S0140-6736(22)00941-2
22. Thompson E.J., Williams D.M., Walker A.J. et al. Risk factors for long COVID: analyses of 10 longitudinal studies and electronic health records in the UK. medRxiv. 2021. published online Jan 1. (preprint). https://doi.org/10.1101/2021.06.24.21259277
23. Whitaker M., Elliott J., Chadeau-Hyam M. et al. Persistent symptoms following SARS-CoV-2 infection in a random community sample of 508,707 people. medRxiv. 2021. published online Jan 1. (preprint). https://doi.org/10.1101/2021.06.28.21259452
24. Su Y., Yuan D., Chen D.G. et al. Multiple early factors anticipate post-acute COVID-19 sequelae. Cell. 2022 Mar 3;185(5):881-895.e20. Epub 2022 Jan 25. https://doi.org/10.1016/j.cell.2022.01.014
25. Sigfrid L., Drake T.M., Pauley E. et al. Long Covid in adults discharged from UK hospitals after Covid-19: A prospective, multicentre cohort study using the ISARIC WHO Clinical Characterisation Protocol. Lancet Reg Health Eur. 2021 Sep;8:100186. Epub 2021 Aug 6. https://doi.org/10.1016/j.lanepe.2021.100186
26. Nalbandian A., Sehgal K., Gupta A. et al. Post-acute COVID-19 syndrome. Nat Med. 2021;27:601–615. https://doi.org/10.1038/s41591-021-01283-z
27. Hotchkiss R.S., Monneret G., Payen D. Sepsis-induced immunosuppression: from cellular dysfunctions to immunotherapy. Nat Rev Immunol. 2013 Dec;13(12):862-74. Epub 2013 Nov 15. https://doi.org/10.1038/nri3552
28. Hamers L., Kox M., Pickkers P. Sepsis-induced immunoparalysis: mechanisms, markers, and treatment options. Minerva Anestesiol. 2015 Apr;81(4):426-39.
29. Groff D., Sun A., Ssentongo A.E. et al. Short-term and Long-term Rates of Postacute Sequelae of SARS-CoV-2 Infection: A Systematic Review. JAMA Netw Open. 2021 Oct 1;4(10):e2128568. https://doi.org/10.1001/jamanetworkopen.2021.28568
30. Huang C., Huang L., Wang Y. et al. 6-month consequences of COVID-19 in patients discharged from hospital: a cohort study. Lancet. 2021 Jan 16;397(10270):220-232. Epub 2021 Jan 8. https://doi.org/10.1016/S0140-6736(20)32656-8
31. Arnold D.T., Hamilton F.W., Milne A. et al. Patient outcomes after hospitalization with COVID-19 and implications for follow-up: results from a prospective UK cohort. Thorax. 2021 Apr;76(4):399-401. Epub 2020 Dec 3. https://doi.org/10.1136/thoraxjnl-2020-216086
32. Chippa V., Aleem A., Anjum F. Post Acute Coronavirus (COVID-19) Syndrome. [Updated 2022 Jun 19]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2022 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK570608/
33. Dixit N.M., Churchill A., Nsair A. et al. Post-Acute COVID-19 Syndrome and the cardiovascular system: What is known? Am Heart J Plus. 2021 May;5:100025. Epub 2021 Jun 24. https://doi.org/10.1016/j.ahjo.2021.100025
34. Ziauddeen N., Gurdasani D., O’Hara M.E. et al. Characteristics of long covid: findings from a social media survey. medRxiv 2021. https://doi.org/10.1101/2021.03.21.21253968
35. Fu H., Zhang N., Zheng Y. et al. Risk stratification of cardiac sequelae detected using cardiac magnetic resonance in late convalescence at the six-month follow-up of recovered COVID-19 patients. J Infect. 2021 Jul;83(1):119-145. Epub 2021 Apr 19. https://doi.org/10.1016/j.jinf.2021.04.016
36. Raj S.R., Arnold A.C., Barboi A. et al. American Autonomic Society. Long-COVID postural tachycardia syndrome: an American Autonomic Society statement. Clin Auton Res. 2021 Jun;31(3):365-368. Epub 2021 Mar 19. https://doi.org/10.1007/s10286-021-00798-2
37. Al-Aly Z, Xie Y, Bowe B. High-dimensional characterization of post-acute sequelae of COVID-19. Nature. 2021 Jun;594(7862):259-264. Epub 2021 Apr 22. https://doi.org/10.1038/s41586-021-03553-9
38. Martinez M.W., Tucker A.M., Bloom O.J. et al. Prevalence of Inflammatory Heart Disease Among Professional Athletes With Prior COVID-19 Infection Who Received Systematic Return-to-Play Cardiac Screening. JAMA Cardiol. 2021 Jul 1;6(7):745-752. https://doi.org/10.1001/jamacardio.2021.0565
39. Ayoubkhani D., Khunti K., Nafilyan V. et al. Thomas Maddox, Ben Humberstone, Sir Ian Diamond, Amitava Banerjee Epidemiology of post-COVID syndrome following hospitalization with coronavirus: a retrospective cohort study. https://doi.org/10.1101/2021.01.15.21249885
40. Katsoularis I., Fonseca-Rodríguez O., Farrington Р. et al. Risk of acute myocardial infarction and ischaemic strokefollowing COVID-19 in Sweden: a self-controlled case series and matched cohort study. Published Online July 29, 2021. https://doi.org/10.1016/S0140-6736(21)00896-5
41. Sui Y., Li J., Venzon D.J. et al. SARS-CoV-2 Spike Protein Suppresses ACE2 and Type I Interferon Expression in Primary Cells From Macaque Lung Bronchoalveolar Lavage. Front Immunol. 2021 Jun 4;12:658428. https://doi.org/10.3389/fimmu.2021.658428
42. Ingraham N.E., Barakat A.G., Reilkoff R. et al. Understanding the renin-angiotensin-aldosterone-SARS-CoV axis: a comprehensive review. Eur Respir J. 2020 Jul 9;56(1):2000912. https://doi.org/10.1183/13993003.00912-2020
43. Cooper S.L., Boyle E., Jefferson S.R. et al. Role of the Renin-Angiotensin-Aldosterone and Kinin-Kallikrein Systems in the Cardiovascular Complications of COVID-19 and Long COVID. Int J Mol Sci. 2021 Jul 31;22(15):8255. https://doi.org/10.3390/ijms22158255
44. Liang L., Yang B., Jiang N. et al. Three-month Follow-up Study of Survivors of Coronavirus Disease 2019 after Discharge. J Korean Med Sci. 2020 Dec 7;35(47):e418. https://doi.org/10.3346/jkms.2020.35.e418
45. Carfì A., Bernabei R., Landi F. Gemelli Against COVID-19 Post-Acute Care Study Group. Persistent Symptoms in Patients After Acute COVID-19. JAMA. 2020 Aug 11;324(6):603-605. https://doi.org/10.1001/jama.2020.12603
46. Pavli A., Theodoridou M., Maltezou H.C. Post-COVID Syndrome: Incidence, Clinical Spectrum, and Challenges for Primary Healthcare Professionals. Arch Med Res. 2021 Aug;52(6):575-581. Epub 2021 May 4. https://doi.org/10.1016/j.arcmed.2021.03.010
47. Mohiuddin Chowdhury A.T.M., Karim M.R., Ali M.A. et al. Clinical Characteristics and the Long-Term Post-recovery Manifestations of the COVID-19 Patients-A Prospective Multicenter Cross-Sectional Study. Front Med (Lausanne). 2021 Aug 17;8:663670. https://doi.org/10.3389/fmed.2021.663670
48. Wang Y.F., Wang S.J. Hypertension and Migraine: Time to Revisit the Evidence. Curr Pain Headache Rep. 2021 Jul 16;25(9):58. https://doi.org/10.1007/s11916-021-00976-x
49. Fernández-de-Las-Peñas C., Torres-Macho J., Velasco-Arribas M. et al. Preexisting hypertension is associated with a greater number of long-term post-COVID symptoms and poor sleep quality: a case-control study. J Hum Hypertens. 2022 Jun;36(6):582-584. Epub 2022 Feb 16. https://doi.org/10.1038/s41371-022-00660-6
50. Grasselli G., Zangrillo A., Zanella A. et al. COVID-19 Lombardy ICU Network. Baseline Characteristics and Outcomes of 1591 Patients Infected With SARS-CoV-2 Admitted to ICUs of the Lombardy Region, Italy. JAMA. 2020 Apr 28;323(16):1574-1581. Erratum in: JAMA. 2021 May 25;325(20):2120. https://doi.org/10.1001/jama.2020.5394
51. Bosso M., Thanaraj T.A., Abu-Farha M. et al. The Two Faces of ACE2: The Role of ACE2 Receptor and Its Polymorphisms in Hypertension and COVID-19. Mol Ther Methods Clin Dev. 2020 Jun 25;18:321-327. https://doi.org/10.1016/j.omtm.2020.06.017
52. Li J., Wang X., Chen J. et al. Association of Renin-Angiotensin System Inhibitors With Severity or Risk of Death in Patients With Hypertension Hospitalized for Coronavirus Disease 2019 (COVID-19) Infection in Wuhan, China. JAMA Cardiol. 2020 Jul 1;5(7):825-830. Erratum in: JAMA Cardiol. 2020 Aug 1;5(8):968. https://doi.org/10.1001/jamacardio.2020.1624
53. Patel S., Rauf A., Khan H. et al. Renin-angiotensin-aldosterone (RAAS): The ubiquitous system for homeostasis and pathologies. Biomed Pharmacother. 2017 Oct;94:317-325. Epub 2017 Jul 31. https://doi.org/10.1016/j.biopha.2017.07.091
54. Devaux C.A., Rolain J.M., Raoult D. ACE2 receptor polymorphism: Susceptibility to SARS-CoV-2, hypertension, multi-organ failure, and COVID-19 disease outcome. J Microbiol Immunol Infect. 2020 Jun;53(3):425-435. Epub 2020 May 6. https://doi.org/10.1016/j.jmii.2020.04.015
55. Drummond G.R., Vinh A., Guzik T.J. et al. Immune mechanisms of hypertension. Nat Rev Immunol. 2019 Aug;19(8):517-532. PMID: 30992524. https://doi.org/10.1038/s41577-019-0160-5
56. Lei Y., Zhang J., Schiavon C.R. et al. SARS-CoV-2 Spike Protein Impairs Endothelial Function via Downregulation of ACE 2. Circ Res. 2021 Apr 30;128(9):1323-1326. Epub 2021 Mar 31. https://doi.org/10.1161/CIRCRESAHA.121.318902
57. Akpek M. Does COVID-19 Cause Hypertension? Angiology. 2022;73(7):682-687. https://doi.org/10.1177/00033197211053903
58. Dani M., Dirksen A., Taraborrelli P. et al. Autonomic dysfunction in 'long COVID': rationale, physiology and management strategies. Clin Med (Lond). 2021 Jan;21(1):e63-e67. Epub 2020 Nov 26. https://doi.org/10.7861/clinmed.2020-0896
59. Shouman K., Vanichkachorn G., Cheshire W.P. et al. Autonomic dysfunction following COVID-19 infection: an early experience. Clin Auton Res. 2021;31(3):385–94. https://doi.org/10.1007/s10286-021-00803-8
60. Blitshteyn S., Whitelaw S. Postural orthostatic tachycardia syndrome (POTS) and other autonomic disorders after COVID-19 infection: a case series of 20 patients. Immunol Res. 2021;69(2):205–11. https://doi.org/10.1007/s12026-021-09185-5
61. Konig M.F., Powell M., Staedtke V. et al. Preventing cytokine storm syndrome in COVID-19 using α-1 adrenergic receptor antagonists. J Clin Invest. 2020;130(7):3345–7. https://doi.org/10.1172/JCI139642
62. DePace N.L., Colombo J. Long-COVID Syndrome and the Cardiovascular System: A Review of Neurocardiologic Effects on Multiple Systems. Curr Cardiol Rep. 2022 Sep 30:1–16. doi: 10.1007/s11886-022-01786-2. Epub ahead of print.
63. Oz M., Lorke D.E., Kabbani N. A comprehensive guide to the pharmacologic regulation of angiotensin converting enzyme 2 (ACE2), the SARSCoV-2 entry receptor. Pharmacol Ther. 2021;221:107750. https://doi.org/10.1016/j.pharmthera.2020.107750
64. Nozari F., Hamidizadeh N. The Effects of Different Classes of Antihypertensive Drugs on Patients with COVID-19 and Hypertension: A Mini-Review. Int J Hypertens. 2022 Jan 21;2022:5937802. https://doi.org/10.1155/2022/5937802
Review
For citations:
Chazova I.E., Blinova N.V., Zhernakova J.V., Kisliak O.A., Nevzorova V.A., Savenkov M.P., Oshchepkova E.V., Ostroumova O.D., Boytsov S.A. Russian medical society expert consensus on arterial hypertension: arterial hypertension and Post-COVID syndrome. Systemic Hypertension. 2022;19(3):5-13. (In Russ.) https://doi.org/10.38109/2075-082X-2022-3-5-13