Preview

Системные гипертензии

Расширенный поиск

Роль повышенной активности симпатического отдела вегетативной нервной системы в развитии осложнений сердечно-сосудистых заболеваний у больных артериальной гипертонией: фармакологические аспекты‌‌

Аннотация

В последние годы возобновился интерес к изучению роли симпатического отдела вегетативной нервной системы (СОВНС) в патогенезе артериальной гипертонии (АГ), а также к оценке роли вмешательств, подавляющих активность СОВНС, для лечения АГ, включая как применение антигипертензивных средств, так и нефармакологических методов. В данной статье обсуждаются данные об изменении автономной регуляции сердечно-сосудистой системы у больных с АГ, возможная роль таких изменений в развитии функциональных и структурных изменений сердца, а также сосудов большого круга кровообращения, которые отмечаются при длительном течение АГ и приводят к развитию неблагоприятных клинических исходов. Приведены имеющиеся данные о влиянии нелекарственных и фармакологических подходов к автономной регуляции сердечно-сосудистой системы.

Об авторе

Сергей Руджерович Гиляревский
ГБОУ ДПО Российская медицинская академия последипломного образования Минздрава России
Россия


Список литературы

1. Di Bona G.F. Sympathetic nervous system and hypertension. Hypertension 2013; 61: 556-60.

2. Mancia G, Grassi G. The Autonomic Nervous System and Hypertension. Circ Res 2014; 114: 1804-14.

3. Folkow B. Physiological aspects of primary hypertension. Physiol Rev 1982; 62: 347-504.

4. Oparil S. The sympathetic nervous system in clinical and experimental hypertension. Kidney Int 1986; 30: 437-52.

5. Mark A.L. The sympathetic nervous system in hypertension: a potential long - term regulator of arterial pressure. J Hypertens (Suppl.) 1996; 14: S159-S165.

6. Mancia G, Grassi G, Giannattasio C, Seravalle G. Sympathetic activation in the pathogenesis of hypertension and progression of organ damage. Hypertension 1999; 34: 724-8.

7. Palatini P, Julius S. The role of cardiac autonomic function in hypertension and cardiovascular disease. Curr Hypertens Rep 2009; 11: 199-205.

8. Grassi G. Assessment of sympathetic cardiovascular drive in human hypertension: achievements and perspectives. Hypertension 2009; 54: 690-7.

9. Esler M. Sympathetic nervous system moves toward center stage in cardiovascular medicine: from Thomas Willis to resistant hypertension. Hypertension 2014; 63: e25-e32.

10. Bakris G, Nathan S. Renal denervation and left ventricular mass regression: a benefit beyond blood pressure reduction? J Am Coll Cardiol 2014; 63: 1924-5.

11. Mc Crory W.W, Klein A.A, Rosenthal R.A. Blood pressure, heart rate, and plasma catecholamines in normal and hypertensive children and their siblings at rest and after standing. Hypertension 1982; 4: 507-13.

12. Horikoshi Y, Tajima I, Igarashi H et al. The adreno - sympathetic system, the genetic predisposition to hypertension, and stress. Am J Med Sci 1985; 289: 186-91.

13. Ferrara L.A, Moscato T.S, Pisanti N et al. Is the sympathetic nervous system altered in children with familial history of arterial hypertension? Cardiology 1988; 75: 200-5.

14. Perini C, Muller F.B, Rauchfleisch U et al. Psychosomatic factors in borderline hypertensive subjects and offspring of hypertensive parents. Hypertension 1990; 16: 627-34.

15. Bianchetti M.G, Weidmann P, Beretta-Piccoli C. Disturbed noradrenergic blood pressure control in normotensive members of hypertensive families. Br Heart J 1984; 51: 306-11.

16. Singh J.P, Larson M.G, Manolio T.A et al. Blood pressure response during treadmill testing as a risk factor for new - onset hypertension. The Framingham heart study. Circulation 1999; 99: 1831-6.

17. Matthews C.E, Pate R.R, Jackson K.L, et al. Exaggerated blood pressure response to dynamic exercise and risk of future hypertension. J Clin Epidemiol 1998; 51: 29-35.

18. Ferrier C, Cox H, Esler M. Elevated total body noradrenaline spillover in normotensive members of hypertensive families. Clin Sci (Lond) 1993; 84: 225-30.

19. Yamada Y, Miyajima E, Tochikubo O et al. Impaired baroreflex changes in muscle sympathetic nerve activity in adolescents who have a family history of essential hypertension. J Hypertens (Suppl.) 1988; 6: S525-S528.

20. Smith P.A, Graham L.N, Mackintosh A.F et al. Sympathetic neural mechanisms in white - coat hypertension. J Am Coll Cardiol 2002; 40: 126-32.

21. Smith P.A, Graham L.N, Mackintosh A.F et al. Relationship between central sympathetic activity and stages of human hypertension. Am J Hypertens 2004; 17: 217-22.

22. Grassi G, Seravalle G, Trevano F.Q et al. Neurogenic abnormalities in masked hypertension. Hypertension 2007; 50: 537-42.

23. Mancia G, Bombelli M, Sega R, Grassi G. White coat and masked hypertension. In: Black H.R, Elliott W.J, eds. Hypertension. A Companion to Braunwald’s Heart Disease. Saunders Elsevier: Philadelphia, PA, 2012; p. 64-8.

24. Maver J, Struci M, Accetto R. Autonomic nervous system in normotensive subjects with a family history of hypertension. Clin Auton Res 2004; 14: 369-75.

25. Julius S, Krause L, Schork N.J et al. Hyperkinetic borderline hypertension in Tecumseh, Michigan. J Hypertens 1991; 9: 77-84.

26. Bohm R, van Baak M, van Hooff M et al. Salivary flow in borderline hypertension. Klin Wochenschr 1985; 63 (Suppl. 3): 154-6.

27. Julius S, Pascual A.V, London R. Role of parasympathetic inhibition in the hyperkinetic type of borderline hypertension. Circulation 1971; 44: 413-8.

28. Esler M, Lambert G, Jennings G. Regional norepinephrine turnover in human hypertension. Clin Exp Hypertens A 1989; 11 (Suppl. 1): 75-89.

29. Anderson E.A, Sinkey C.A, Lawton W.J, Mark A.L. Elevated sympathetic nerve activity in borderline hypertensive humans: evidence from directintraneural recordings. Hypertension 1988; 14: 1277-83.

30. Hering D, Kara T, Kucharska W et al. High - normal blood pressure is associated with increased resting sympathetic activity but normal responses to stress tests. Blood Press 2013; 22: 183-7.

31. Blankestijn P.J, Man in’t Veld A.J, Tulen J et al. Support for adrenaline - hypertension hypothesis: 18 hour pressor effect after 6 hours adrenaline infusion. Lancet 1988; 2: 1386-9.

32. Brodde O.E, Daul A, O’Hara N, Bock K.D. Increased density and responsiveness of alpha 2 and beta - adrenoceptors in circulating blood cells of essential hypertensive patients. J Hypertens Suppl 1984; 2: S111-S114.

33. Brodde O.E. Beta - adrenoreceptors in cardiac disease. Pharmacol Ther 1993; 60: 405-30.

34. Valentini M, Julius S, Palatini P et al. Attenuation of the haemodynamic, metabolic and energy responses to iosproterenol in patients with hypertension. J Hypertens 2004; 22: 1999-2006.

35. Grassi G, Seravalle G, Stella M.L, Mancia G. Pathophysiological aspects of hypertensive heart disease in women. J Hypertens 2002; 20 (Suppl. 2): S6-S10.

36. Narkiewicz K, Phillips B.G, Kato M et al. Gender - selective interaction between aging, blood pressure, and sympathetic nerve activity. Hypertension 2005; 45: 522-25.

37. Grassi G, Seravalle G, Bertinieri G et al. Sympathetic and reflex alterations in systo - diastolic and systolic hypertension of the elderly. J Hypertens 2000; 18: 587-93.

38. Grassi G, Cattaneo B.M, Seravalle G et al. Baroreflex control of sympathetic nerve activity in essential and secondary hypertension. Hypertension 1998; 31: 68-72.

39. Schobel H.P, Fischer T, Heuszer K et al. Preeclampsia - a state of sympathetic overactivity. N Engl J Med 1996; 335: 1480-5.

40. Grassi G, Seravalle G, Dell’Oro R et al. Adrenergic and reflex abnormalities in obesity - related hypertension. Hypertension 2000; 36: 538-42.

41. Grassi G, Dell’Oro R, Quarti-Trevano F et al. Neuroadrenergic and reflex abnormalities in patients with metabolic syndrome. Diabetologia 2005; 48: 1359-65.

42. Huggett R.J, Scott E.M, Gilbey S.G et al. Impact of type 2 diabetes mellitus on sympathetic neural mechanisms in hypertension. Circulation 2003; 108: 3097-3101.

43. Brands M.W, Hall J.E. Insulin resistance, hyperinsulinemia, and obesity - associated hypertension. J Am Soc Nephrol 1992; 3: 1064-77.

44. Scherrer U, Sartori C. Insulin as a vascular and sympathoexcitatory hormone: implications for blood pressure regulation, insulin sensitivity, and cardiovascular morbidity. Circulation 1997; 96: 4104-13.

45. Mancia G, Bombelli M, Corrao G et al. Metabolic syndrome in the PressioniArterioseMonitorate E LoroAssociazioni (PAMELA) study: daily life blood pressure, cardiac damage, and prognosis. Hypertension 2007; 49: 40-7.

46. Klein I.H, Ligtenberg G, Neumann J et al. Sympathetic nerve activity is inappropriately increased in chronic renal disease. J Am Soc Nephrol 2003; 14: 3239-44.

47. Grassi G, Quarti-Trevano F, Seravalle G et al. Early sympathetic activation in the initial clinical stages of chronic renal failure. Hypertension 2011; 57: 846-51.

48. Burns J, Sivananthan M.U, Ball S.G et al. Relationship between central sympathetic drive and magnetic resonance imaging - determined left ventricular mass in essential hypertension. Circulation 2007; 115: 1999-2005.

49. Grassi G, Seravalle G, Quarti-Trevano F et al. Sympathetic and baroreflex cardiovascular control in hypertension - related left ventricular dysfunction. Hypertension 2009; 53: 205-9.

50. Grassi G, Seravalle G, Quarti-Trevano F et al. Effects of hypertension and obesity on the sympathetic activation of heart failure patients. Hypertension 2003; 42: 873-7.

51. Grassi G, Seravalle G, Dell’Oro R et al. Sympathetic and baroreflex function in hypertensive or heart failure patients with ventricular arrhythmias. J Hypertens 2004; 22: 1747-53.

52. Seravalle G, Volpe M, Ganz F et al. Neuroadrenergic profile in patients with resistant hypertension. J Hypertens 2011; 29: e141 (abstract).

53. Grassi G, Colombo M, Seravalle G et al. Dissociation between muscle and skin sympathetic nerve activity in essential hypertension, obesity, and congestive heart failure. Hypertension 1998; 31: 64-7.

54. Grassi G, Seravalle G, Brambilla G et al. Regional differences in sympathetic activation in lean and obese normotensive individuals with obstructive sleep apnoea. J Hypertens 2014; 32: 383-8.

55. Grassi G, Seravalle G, Arenare F et al. Behaviour of regional adrenergic outflow in mild - to - moderate renal failure. J Hypertens 2009; 27: 562-6.

56. Bevan R.D, Tsuru H. Functional and structural changes in the rabbit ear artery after sympathetic denervation. Circ Res 1981; 49: 478-85.

57. Mangoni A.A, Mircoli L, Giannattasio C et al. Effect of sympathectomy on mechanical properties of common carotid and femoral arteries. Hypertension 1997; 30: 1085-8.

58. Failla M, Grappiolo A, Emanuelli G et al. Sympathetic tone restrains arterial distensibility of healthy and atherosclerotic subjects. J Hypertens 1999; 17: 1117-23.

59. Mancia G. Short - term and long - term blood pressure variability. In: Berbari A.E, Mancia G, eds. Special Issues in Hypertension. Milan: Springer, 2012: p. 91-102.

60. Cohn J.N, Levine T.B, Olivari M.T et al. Plasma norepinephrine as a guide to prognosis in patients with chronic congestive heart failure. N Engl J Med 1984; 311: 819-23.

61. Brunner-La Rocca H.P, Esler M.D, Jennings G.L, Kaye D.M. Effect of cardiac sympathetic nervous activity on mode of death in congestive heart failure. Eur Heart J 2001; 22: 1136-43.

62. Sander D, Winbeck K, Klingelhofer J et al. Prognostic relevance of pathological sympathetic activation after acute thromboembolic stroke. Neurology 2001; 57: 833-8.

63. Zoccali C, Mallamaci F, Parlongo S et al. Plasma norepinephrine predicts survival and incident cardiovascular events in patients with end - stage renal disease. Circulation 2002; 105: 1354-9.

64. Barretto A.C, Santos A.C, Munhoz R et al. Increased muscle sympathetic nerve activity predicts mortality in heart failure patients. Int J Cardiol 2009; 135: 302-7.

65. Andreas S, Haarmann H, Klarner S et al. Increased sympathetic nerve activity in COPD is associated with morbidity and mortality. Lung 2014; 192: 235-41.

66. Penne E.L, Neumann J, Klein I.H et al. Sympathetic hyperactivity and clinical outcome in chronic kidney disease during standard treatment. J Nephrol 2009; 22: 208-15.

67. Grassi G, Seravalle G, Stella M.L et al. Sympathoexcitatory responses to the acute blood pressure fall induced by central or peripheral antihypertensive drugs. Am J Hypertens 2000; 13: 29-34.

68. Grassi G. Counteracting the sympathetic nervous system in essential hypertension. Curr Opin Nephrol Hypertens 2004; 13: 513-9.

69. Van Zwieten P. Beneficial interactions between pharmacological, pathophysiological and hypertension research. J Hypertens 2001; 19: 465-73.

70. Grassi G, Seravalle G, Calhoun D.A, Mancia G. Physical training and baroreceptor control of sympathetic nerve activity in humans. Hypertension 1994; 23: 294-301.

71. Grassi G, Seravalle G, Colombo M et al. Body weight reduction, sympathetic nerve traffic, and arterial baroreflex in obese normotensive humans. Circulation 1998; 97: 2037-42.

72. Grassi G, Cattaneo B.M, Seravalle G et al. Baroreflex impairment by low sodium diet in mild or moderate essential hypertension. Hypertension 1997; 29: 802-7.

73. Grassi G, Dell’Oro R, Seravalle G et al. Short - and long - term neuroadrenergic effects of moderate dietary sodium restriction in essential hypertension. Circulation 2002; 106: 1957-61.

74. Pal G.K, Adithan C, Dutta T.K et al. Preference for salt contributes to sympathovagal imbalance in the genesis of prehypertension. Eur J Clin Nutr 2013; 67: 586-91.

75. Xu J, Hering D, Sata Y et al. Renal denervation: current implications and future perspectives. Clin Sci (Lond) 2014; 126: 41-53.

76. Menne J, Jordan J, Linnenweber-Held S, Haller H. Resistant hypertension: baroreflex stimulation as a new tool. Nephrol Dial Transplant 2013; 28: 288-95.

77. Heusser K, Tank J, Engeli S et al. Carotid baroreceptor stimulation, sympathetic activity, baroreflex function, and blood pressure in hypertensive patients. Hypertension 2010; 55: 619-26.

78. Schmieder R.E, Redon J, Grassi G et al. ESH position paper: renal denervation - an interventional therapy of resistant hypertension. J Hypertens 2012; 30: 837-41.

79. Schlaich M.P, Schmieder R.E, Bakris G et al. International Expert Consensus statement: percutaneous transluminal denervation for the treatment of resistant hypertension. J Am Coll Cardiol 2013; 62: 2031-45.

80. Bhatt D.L, Kandzari D.E, O’Neill W.W et al. A controlled trial of renal denervation for resistant hypertension. N Engl J Med 2014; 370: 1393-401.

81. Messerli F.H. Doxazosin and congestive heart failure. J Am Coll Cardiol 2001; 38: 1295-6.

82. Wiysonge C.S, Opie L.H. b-Blockers as initial therapy for hypertension. JAMA 2013; 310: 1851-2.

83. Brinkmann J, Heusser K, Schmidt B.M et al. Catheter - based renal nerve ablation and centrally generated sympathetic activity in difficult - to - control hypertensive patients: prospective case series. Hypertension 2012; 60: 1485-90.

84. ALLHAT Collaborative Research Group. Major cardiovascular events in hypertensive patients randomized to doxazosin vs. chlorthalidone: the antihypertensive and lipid - lowering treatment to prevent heart attack trial (ALLHAT). JAMA 2000; 283: 1967-75.

85. Chen P.S, Tan A.Y. Autonomic nerve activity and atrial fibrillation. Heart Rhythm 2007; 4: S61-S64.

86. Sharifov O.F, Fedorov V.V, Beloshapko G.G et al. Roles of adrenergic and cholinergic stimulation in spontaneous atrial fibrillation in dogs. J Am Coll Cardiol 2004; 43: 483-90.

87. Tan A.Y, Zhou S, Gholmieh G et al. Spontaneous autonomic nerve activity and paroxysmal atrial tachyarrhythmias (abstract). Heart Rhythm 2006; 3 (1S): S184.

88. Shen M.J, Choi E.K, Tan A.Y et al. Neural mechanisms of atrial arrhythmias. Nat Rev Cardiol 2011; 9: 30-9.

89. Linz D, Mahfoud F, Schotten U et al. Renal sympathetic denervation suppresses postapneic blood pressure rises and atrial fibrillation in a model for sleep apnea. Hypertension 2012; 60: 172-8.

90. Pokushalov E, Romanov A, Corbucci G et al. A randomized comparison of pulmonary vein isolation with versus without concomitant renal artery denervation in patients with refractory symptomatic atrial fibrillation and resistant hypertension. J Am Coll Cardiol 2012; 60: 1163-70.

91. Deftereos S, Giannopoulos G, Kossyvakis C et al. Effectiveness of moxonidine to reduce atrial fibrillation burden in hypertensive patients. Am J Cardiol 2013; 112: 684-7.

92. Giannopoulos G, Kossyvakis C, Efremidis M et al. Central Sympathetic Inhibition to Reduce Post-Ablation Atrial Fibrillation Recurrences in Hypertensive Patients: A Randomized Controlled Study. Circulation 2014. Aug 21. [Epub ahead of print].


Рецензия

Для цитирования:


Гиляревский С.Р. Роль повышенной активности симпатического отдела вегетативной нервной системы в развитии осложнений сердечно-сосудистых заболеваний у больных артериальной гипертонией: фармакологические аспекты‌‌. Системные гипертензии. 2014;11(3):88-94.

For citation:


Gilyarevsky S.R. The role of the vegetative part of sympathetic nervous system in development of cardiovascular complications in patients with arterial hypertension: pharmacological aspects. Systemic Hypertension. 2014;11(3):88-94.

Просмотров: 0


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2075-082X (Print)
ISSN 2542-2189 (Online)