Preview

Systemic Hypertension

Advanced search

Comparative evaluation new glucagon-like peptide 1 receptor agonist semaglutide and sodium-glucose cotransporter-2 inhibitors empagliflozin on left ventricular diastolic function in patients with arterial hypertension, obesity and type 2 diabetes mellitus

https://doi.org/10.38109/2075-082X-2022-1-39-48

Abstract

The aim of this study is conducting a comparative analysis of the effect of 24 weeks of therapy of glucagon-like peptide-1 receptor agonists (aGLP-1) semaglutide and a sodium-glucose co-transporter 2 inhibitors (SGLT2) empaglifosin on the left heart chambers and the severity of epicardial adipose tissue (EAT) in patient with arterial hypertension (АН), obesity and diabetes mellitus (DM).

Materials and methods: 91 patients (40.7% women and 59.3% men) aged 44-65 years with type 2 DM (glycated hemoglobin level over 6.5%) and obesity (WC over 80 cm in women and over 94 cm in men) were successively included in the study. All patients received standard antihypertensive and hypolipidemic therapy, in addition, all patients were on metformin monotherapy at a dose of 1000-2000 mg/day (during the follow-up, the therapy did not change). Anthropometric measurements, echocardiography were carried out to evaluate the structural and functional parameters of LV using transmitral and tissue Doppler and determine the thickness of EAT. After a preliminary examination, all patients were randomized on two groups: the 1st group was prescribed semaglutide therapy with an initial dose of 0.25 mg and gradual titration every 4 weeks to 1.0 mg, the 2nd group was prescribed empagliflozin at a dose of 10 or 25 mg. After 24 weeks, all patients were re-examined.

Results: semaglutide and empagliflozin improved a structural and functional condition of the left heart chambers — LV mass, LV mass index (LVMI), the LA index volume, practically all of indicators of the LV diastolic function (E/A ratio, LV-filling pressure, Еmlat , Emsept velosity) in patients with AH, obesity and DM 2 types. In addition, in the semaglutide group, a pronounced decrease in the EAT thickness with 0.76 cm [0.56; 0.8] to 0.71 cm [0.5; 0.74] (p < 0.001), which was not observed in the empagliflozin group. Apparently, semaglutide and empagliflozin positive effect on the left heart chambers achieved by the different mechanisms. In the 1st group by means of decrease LVMI and EAT thickness, in the 2nd group through reduction heart preload and LV-filling pressure according improve LV relaxation.

Conclusion: the new sugar-lowering agents should be prescribed to patients with type 2 DM and CVD or a high risk of CVD development taking into account their impact on the cardiovascular prognosis, and in some cases considering the need for a combination of these drugs.

About the Authors

M. R. Azimova
E.I. Chazov National Medical Research Center of Cardiology
Russian Federation

Marina R. Azimova, Postgraduate Student, Department of Hypertension, A.L. Myasnikov Research Institute of Cardiology

3rd Cherepkovskaya str., 15a, Moscow 121552



Yu. V. Zhernakova
E.I. Chazov National Medical Research Center of Cardiology
Russian Federation

Yuliya V. Zhernakova, Prof., Dr. of Sci. (Med.), Scientific Secretary of the Institute of Clinical Cardiology named after A.L. Myasnikov, National Medical Research Center of Cardiology

3rd Cherepkovskaya str., 15a, Moscow 121552

+7(495) 495-414-63-00



M. A. Saidova
E.I. Chazov National Medical Research Center of Cardiology
Russian Federation

Marina A. Saidova, Prof., Dr. of Sci. (Med.), Head of the Department of Ultrasound Diagnostic Methods, A.L. Myasnikov Research Institute of Cardiology

3rd Cherepkovskaya str., 15a, Moscow 121552



I. E. Chazova
E.I. Chazov National Medical Research Center of Cardiology
Russian Federation

Irina E. Chazova (chairman), Prof., Dr. of Sci. (Med.), Academician of RAS, Deputy General Director for Scientific and Expert Work, Head of Hypertension Department, A.L. Myasnikov Research Institute of Cardiology

3rd Cherepkovskaya str., 15a, Moscow 121552

Phone: +7(495) 415-52-05



References

1. Saeedi P., Petersohn I., Salpea P., Malanda B., Karuranga S., Unwin N., et al. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: results from the International Diabetes Federation Diabetes Atlas, 9(th) edition. Diabetes Res. Clin. Pract. 2019; 157:107843. https://doi.org/10.1016/j.diabres.2019.107843

2. Kannel W.B., Mcgee D.L. Diabetes and cardiovascular disease. the framingham study. JAMA 1979 May 11;241(19):2035-8. https://doi.org/10.1001/jama.241.19.2035, PMID: 430798

3. Gustafsson I., Brendorp B., Seibaek M., Burchardt H., Hildebrandt P., Kober L., et al. Influence of diabetes and diabetes-gender interaction on the risk of death in patients hospitalized with congestive heart failure. J. Am. Coll. Cardiol. 2004 Mar 3;43(5):771-7. https://doi.org/10.1016/j.jacc.2003.11.024, PMID: 14998615

4. Matsue Y., Suzuki M., Nakamura R., Abe M., Ono M., Yoshida S., et al. Prevalence and prognostic implications of pre-diabetic state in patients with heart failure. Circ. J. 2011;75(12):2833-2839. https://doi.org/10.1253/circj.CJ-11-0754, PMID: 22008319

5. Zinman B., Wanne Ch., Lachin J.M., et al. Empagliflozin, Cardiovascular Outcomes, and Mortality in Type 2 Diabetes. The New England Journal of Medicine. 2015;373(22):2117-2128. https://doi.org/10.1056/nejmoa1504720, PMID: 26378978

6. Zelniker TA, Wiviott SD, Raz I, et al. SGLT2 inhibitors for primary and secondary prevention of cardiovascular and renal outcomes in type 2 diabetes: a systematic review and meta-analysis of cardiovascular outcome trials. Lancet 2019 Jan 5;393(10166):31-39. https://doi.org/10.1016/s0140-6736(18)32590-x, PMID: 30424892

7. Kato ET, Silverman MG, Mosenzon O, et al. Effect of dapagliflozin on heart failure and mortality in type 2 diabetes mellitus. Circulation 2019;139(22):2528-2536. https://doi.org/10.1161/circulationaha.119.040130, PMID: 30882238

8. Packer M. SGLT2 inhibitors produce cardiorenal benefits by promoting adaptive cellular reprogramming to induce a state of fasting mimicry: a paradigm shift in understanding their mechanism of action. Diabetes Care 2020;43(3):508-511. https://doi.org/10.2337/dci19-0074, PMID: 32079684

9. McMurray JJV, Solomon SD, Inzucchi SE, et al. Dapagliflozin in patients with heart failure and reduced ejection fraction. N Engl J Med 2019;381(21):1995-2008. https://doi.org/10.1056/nejmoa1911303, PMID: 31535829

10. Marso S., Daniels G., Brown-Frandsen K. et al. Liraglutide and cardiovascular outcomes in type 2 diabetes. The New England Journal of Medicine 2016 Jul 28; 375(4):311-322. https://doi.org/10.1056/nejmoa1603827, PMID: 27295427, PMCID: PMC4985288

11. Marso S.P., Bain S.C., Consoli A. et al. Semaglutide and cardiovascular outcomes in patients with type 2 diabetes. N Engl J Med 2016; 375(19):1834-1844. https://doi.org/10.1056/nejmoa1607141, PMID: 27633186

12. Zabalgoitia M, Ismaeil MF, Anderson L, Maklady FA. Prevalence of diastolic dysfunction in normotensive, asymptomatic patients with well-controlled type 2 diabetes mellitus. Am J Cardiol. 2001;87(3):320-3. https://doi.org/10.1016/s0002-9149(00)01366-7, PMID: 11165968

13. Kane GC, Karon BL, Mahoney DW, Redfield MM, Roger VL, Burnett Jr JC, et al. Progression of left ventricular diastolic dysfunction and risk of heart failure. JAMA. 2011;306(8):856-63. https://doi.org/10.1001/jama.2011.1201, PMID: 21862747, PMCID: PMC3269764

14. Boudina S, Abel ED. Diabetic cardiomyopathy revisited. Circulation. 2007;115(25):3213-23. https://doi.org/10.1161/circulationaha.106.679597, PMID: 17592090

15. Russo C, Jin Z, Homma S, Rundek T, Elkind MS, Sacco RL, et al. Effect of obesity and overweight on left ventricular diastolic function: a community-based study in an elderly cohort. J Am Coll Cardiol. 2011;57(12):1368-74. https://doi.org/10.1016/j.jacc.2010.10.042, PMID: 21414533 PMCID: PMC3077126

16. Canepa M, Strait JB, Abramov D, Milaneschi Y, AlGhatrif M, Moni M, et al. Contribution of central adiposity to left ventricular diastolic function (from the Baltimore Longitudinal Study of Aging). Am J Cardiol. 2012;109(8):1171-8. https://doi.org/10.1016/j.amjcard.2011.11.054, PMID: 22257709 PMCID: PMC3319236

17. Canepa M, Strait JB, Milaneschi Y, Alghatrif M, Ramachandran R, Makrogiannis S, et al. The relationship between visceral adiposity and left ventricular diastolic function: Results from the Baltimore Longitudinal Study of Aging. Nutr Metab Cardiovasc Dis. 2013;23(12):1263-70. https://doi.org/10.1016/j.numecd.2013.04.003, PMID: 23809149 PMCID: PMC3835727

18. Bella JN, Palmieri V, Roman MJ, et al. Mitral ratio of peak early to late diastolic filling velocity as a predictor of mortality in middle-aged and elderly adults. The Strong Heart Study. Circulation. 2002;105(16):1928-1933. https://doi.org/10.1161/01.cir.0000015076.37047.d9, PMID: 11997279

19. Kitzman DW, Gardin JM, Gottdiener JS, et al. Importance of heart failure with preserved systolic function in patients ≥65 years of age. Am J Cardiol. 2001;87(4):413-419. https://doi.org/10.1016/s0002-9149(00)01393-x, PMID: 11179524

20. Owan TE, Hodge DO, Herges RM, Jacobson SJ, Roger VL, Redfield MM. Trends in prevalence and outcome of heart failure with preserved ejection fraction. N Engl J Med. 2006;355:251–259.

21. Liu JE, Palmieri V, Roman MJ, et al. The impact of diabetes on left ventricular filling pattern in normotensive and hypertensive adults: the Strong Heart Study. J Am Coll Cardiol. 2001;37:1943- 1949. https://doi.org/10.1016/S0735-1097(01)01230-X

22. Lau J, Bloch P, Schaffer L, et al. Discovery of the once‐weekly glucagon‐like peptide‐1 (GLP‐1) analogue semaglutide. J Med Chem. 2015;58:7370‐7380. https://doi.org/10.1021/acs.jmedchem.5b00726, PMID: 26308095

23. Campbell J. E., Drucker D.J. Pharmacology, physiology, and mechanisms of incretin hormone action. Cell Metab. 2013 Jun 4;17(6):819-837. https://doi.org/10.1016/j.cmet.2013.04.008, PMID: 23684623

24. Heerspink H.J., Perkins B.A., Fitchett D.H., Husain M., and Cherney D.Z. Sodium glucose cotransporter. 2 inhibitors in the treatment of diabetes mellitus: cardiovascular and kidney effects, potential mechanisms, and clinical applications. Circulation 2016 Sep 6;134(10):752-72. https://doi.org/10.1161/circulationaha.116.021887, PMID: 27470878

25. Abdul-Ghani M.A., Norton L., Defronzo R.A. Role of sodium-glucose cotransporter 2 (SGLT 2) inhibitors in the treatment of type 2 diabetes. Endocr Rev. 2011 Aug;32(4):515-31. https://doi.org/10.1210/er.2010-0029, PMID: 21606218

26. Scheen A.J. Pharmacodynamics, efficacy and safety of sodium-glucose co-transporter type 2 (SGLT2) inhibitors for the treatment of type 2 diabetes mellitus. Drugs. 2015 Jan;75(1):33-59. https://doi.org/10.1007/s40265-014-0337-y, PMID: 25488697

27. . Inzucchi S.E. , Zinman B. , Wanner C. , et al. SGLT-2 inhibitors and cardiovascular risk: proposed pathways and review of ongoing outcome trials. Diab Vasc Dis Res. 2015 Mar;12(2):90-100. https://doi.org/10.1177/1479164114559852, PMID: 25589482 PMCID: PMC4361459

28. . Cai X., Ji L., Chen Y., et al. Comparisons of weight changes between sodium-glucose co- transporter-2 inhibitors treatment and glucagon-like peptide-1 analogs treatment in type 2 diabetes patients: meta-analysis. J Diabetes Investig. 2017 Jul;8(4):510-517. https://doi.org/10.1111/jdi.12625, PMID: 28106956 PMCID: PMC5497054

29. Mazidi M., Rezaie P., Gao H.K., et al. Effect of sodium-glucose co-transporter-2 inhibitors on blood pressure in people with type 2 diabetes mellitus: a systematic review and meta-analysis of 43 randomized control trials with 22 528 patients. J Am Heart Assoc. 2017 May 25;6(6):e004007. https://doi.org/10.1161/jaha.116.004007, PMID: 28546454 PMCID: PMC5669140

30. Zhao Y., Xu L., Tian D., et al. Effects of sodium-glucose co-transporter 2 (SGLT2) inhibitors on serum uric acid level: a meta-analysis of randomized controlled trials. Diabetes Obes Metab. 2018 Feb;20(2):458-462. https://doi.org/10.1111/dom.13101, PMID: 28846182

31. Chen, J., Williams, S., Ho, S., Loraine, H., Hagan, D., Whaley, J. M., et al. Quantitative PCR tissue expression profiling of the human SGLT2 gene and related family members. Diabetes Ther. 2010 Dec;1(2):57-92. https://doi.org/10.1007/s13300-010-0006-4, PMID: 22127746 PMCID: PMC3138482

32. Food and Drug Administration. Ozempic (semaglutide) injection, for subcutaneous use [prescribing information]. Accessed September 25, 2020.

33. O’Neil PM, Birkenfeld AL, McGowan B, et al. Efficacy and safety of semaglutide compared with liraglutide and placebo for weight loss in patients with obesity: a randomised, double-blind, placebo and active controlled, dose-ranging, phase 2 trial. Lancet. 2018;392(10148):637-649. https://doi.org/10.1016/S0140-6736(18)31773-2, PMID: 30122305

34. Wadden TA, Bailey TS, Billings LK, Davies M, Frias JP, Koroleva A, Lingvay I, O'Neil PM, Rubino DM, Skovgaard D, Wallenstein SOR, Garvey WT; STEP 3 Investigators. Effect of Subcutaneous Semaglutide vs Placebo as an Adjunct to Intensive Behavioral Therapy on Body Weight in Adults With Overweight or Obesity: The STEP 3 Randomized Clinical Trial. JAMA. 2021 Apr 13;325(14):1403-1413. https://doi.org/10.1001/jama.2021.1831, PMID: 33625476; PMCID: PMC7905697.

35. Heerspink H.J., Perkins B.A., Fitchett D.H. et al. Sodium glucose cotransporter 2 inhibitors in the treatment of diabetes mellitus: cardiovascular and kidney effects, potential mechanisms, and clinical applications. Circulation 2016 Sep 6;134(10):752-72. https://doi.org/10.1161/circulationaha.116.021887, PMID: 27470878

36. Kario K., Okada K., Kato M. et al. 24-Hour Blood Pressure-Lowering Effect of an SGLT-2 Inhibitor in Patients with Diabetes and Uncontrolled Nocturnal Hypertension: Results from the Randomized, Placebo-Controlled SACRA Study. Circulation. 2018 Nov 29;139(18):2089-2097. https://doi.org/10.1161/circulationaha.118.037076, PMID: 30586745 PMCID: PMC6493695

37. Koska J, Sands M, Burciu C, et al. Exenatide protects against glucose- and lipid-induced endothelial dysfunction: evidence for direct vasodilation effect of GLP-1 receptor agonists in humans. Diabetes. 2015 Jul;64(7):2624-35. https://doi.org/10.2337/db14-0976, PMID: 25720388 PMCID: PMC4477348

38. Cohen, N. D., Gutman, S. J., Briganti, E. M., and Taylor, A. J. (2019). Effects of empagliflozin treatment on cardiac function and structure in patients with type. 2 diabetes: a cardiac magnetic resonance study. Intern. Med. J 2019 Aug;49(8):1006-1010. https://doi.org/10.1111/imj.14260, PMID: 30784160

39. Hammer S, Snel M, Lamb HJ, et al. Prolonged caloric restriction in obese patients with type 2 diabetes mellitus decreases myocardial triglyceride content and improves myocardial function. J Am Coll Cardiol. 2008;52(12):1006–1012. https://doi.org/10.1016/j.jacc.2008.04.068, PMID: 18786482

40. Yagi K., Imamura T., Tada H. et al. Diastolic cardiac function improvement by liraglutide is mainly body weight reduction dependent but independently contributes to B-type natriuretic peptide reduction in patients with type 2 diabetes with preserved ejection fraction. Journal Diabetes Research. 2021 Mar 27;2021:8838026. https://doi.org/10.1155/2021/8838026, PMID: 33855087 PMCID: PMC8019623

41. Bizino MB, Jazet IM, Westenberg JJM, van Eyk HJ, Paiman EHM, Smit JWA, Lamb HJ. Effect of liraglutide on cardiac function in patients with type 2 diabetes mellitus: randomized placebo- controlled trial. Cardiovasc Diabetol. 2019 Apr 30;18(1):55. https://doi.org/10.1186/s12933-019-0857-6, PMID: 31039778; PMCID: PMC6492440.

42. Saponaro, F., Sonaglioni, A., Rossi, A., Montefusco, L., Lombardo, M., Adda, G., et al. Improved diastolic function in type. 2 diabetes after a six month liraglutide treatment. Diabetes Res. Clin. Pract. 2016 Aug;118:21-8. https://doi.org/10.1016/j.diabres.2016.04.046, PMID: 27485853

43. Verma, S., Garg, A., Yan, A. T., Gupta, A. K., Al-Omran, M., Sabongui, A., et al. Effect of empagliflozin on left ventricular mass and diastolic function in individuals with diabetes: an important clue to the EMPA-REG OUTCOME trial? Diabetes Care 2016 Dec;39(12):e212-e213. https://doi.org/10.2337/dc16-1312, PMID: 27679584

44. Matsutani D., Sakamoto M., Kayama Y., Takeda N., Horiuchi R., Utsunomiya K. Effect of canagliflozin on left ventricular diastolic function in patients with type 2 diabetes. Cardiovasc. Diabetol. 2018 May 22;17(1):73. https://doi.org/10.1186/s12933-018-0717-9, PMID: 29788955 PMCID: PMC5963148

45. Soga F., Tanaka H., Tatsumi K., Mochizuki Y., Sano H., Toki H., et al. Impact of dapagliflozin on left ventricular diastolic function of patients with type. 2 diabetic mellitus with chronic heart failure. Cardiovasc. Diabetol. 2018 Oct 8;17(1):132. https://doi.org/10.1186/s12933-018-0775-z, PMID: 30296931 PMCID: PMC6174555

46. From AM, Scott CG, Chen HH. Changes in diastolic dysfunction in diabetes mellitus over time. Am J Cardiol. 2009;103(10):1463-1466. https://doi.org/10.1016/j.amjcard.2009.01.358, PMID: 19427447 PMCID: PMC2700297

47. Iacobellis G. Epicardial fat: a new cardiovascular therapeutic target. Curr Opin Pharmacol. 2016 Apr;27:13-8, https://doi.org/10.1016/j.coph.2016.01.004, PMID: 26848943

48. Iacobellis G, Villasante Fricke AC. Effects of Semaglutide Versus Dulaglutide on Epicardial Fat Thickness in Subjects with Type 2 Diabetes and Obesity. J Endocr Soc. 2020 Mar 13;4(4):bvz042, https://doi.org/10.1210/jendso/bvz042, PMID: 32190806 PMCID: PMC7069837

49. Iacobellis G, Mohseni M, Bianco SD, Banga PK. Liraglutide causes large and rapid epicardial fat reduction. Obesity (Silver Spring). 2017;25(2):311-316. https://doi.org/10.1002/oby.21718, PMID: 28124506

50. Iacobellis G, Camarena V, Sant DW, Wang G. Human epicardial fat expresses glucagon- like peptide 1 and 2 receptors gene. Horm Metab Res.2017; 49(8):625-630. https://doi.org/10.1055/s-0043-109563, PMID: 28514806 PMCID: PMC7430146

51. Pratley RE, Aroda VR, Lingvay I, et al.; SUSTAIN 7 investigators. Semaglutide versus dulaglutide once weekly in patients with type 2 diabetes (SUSTAIN 7): a randomised, open-label, phase 3b trial. Lancet Diabetes Endocrinol. 2018; 6 (4): 275-286. https://doi.org/10.1016/s2213-8587(18)30024-x, PMID: 29397376

52. Çetin M, Kocaman SA, Durakoğlugil ME, Erdoğan T, Ergül E, Dogan S, Canga A. Effect of epicardial adipose tissue on diastolic functions and left atrial dimension in untreated hypertensive patients with normal systolic function. 2013 May;61(5):359-64. https://doi.org/10.1016/j.jjcc.2012.12.015, PMID: 23473765

53. Iacobellis G., Corradi D., Sharma A.M. Epicardial adipose tissue: anatomic, biomolecular and clinical relationships with the heart. Nat Clin Pract Cardiovasc Med. 2005 Oct;2(10):536-43. https://doi.org/10.1038/ncpcardio0319, PMID: 16186852

54. Sacks H.S., Fain J.N.Human epicardial adipose tissue: a review. Am Heart J. 2007 Jun;153(6):907- 17. https://doi.org/10.1016/j.ahj.2007.03.019, PMID: 17540190

55. Blinova N.V., Azimova M.O., Zhernakova J.V. et al. Assessment of epicardial adipose tissue by echocardiography for risk stratification in in young adults with abdominal obesity. Systemic Hypertension. 2020; 17 (4): 74–79 (in Russ.) https://doi.org/10.26442/2075082X.2020.4.200557

56.


Review

For citations:


Azimova M.R., Zhernakova Yu.V., Saidova M.A., Chazova I.E. Comparative evaluation new glucagon-like peptide 1 receptor agonist semaglutide and sodium-glucose cotransporter-2 inhibitors empagliflozin on left ventricular diastolic function in patients with arterial hypertension, obesity and type 2 diabetes mellitus. Systemic Hypertension. 2022;19(1):39-48. (In Russ.) https://doi.org/10.38109/2075-082X-2022-1-39-48

Views: 346


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2075-082X (Print)
ISSN 2542-2189 (Online)