Клинические и генетические факторы, определяющие поражения органов-мишеней у пациентов с артериальной гипертензией среди населения Горной Шории
Аннотация
Список литературы
1. Бойцов С.А. Неинфекционные болезни: активизация борьбы. Бюллетень Всемирной организации здравоохранения. 2015; 93 (1): 9-10.
2. Sehestedt T, Jeppesen J, Hansen T.W. et al. Thresholds for pulse wave velocity, urine albumin creatinine ratio and left ventricular mass index using SCORE, Framingham and ESH/ESC risk charts. J Hypertens 2012; 30: 1928-36.
3. Сумин А.Н., Осокина А.В., Щеглова А.В. и др. Оценка сердечно-лодыжечного сосудистого индекса у больных ИБС с различным типом диастолической дисфункции левого желудочка. Комплексные проблемы сердечно-сосудистых заболеваний. 2016; (2): 51-8.
4. Kristensen S.D, Baumgartner H, Casadeiet B. et al. Highlights of the 2008 scientific sessions of the European Society of Cardiology. J Am Coll Cardiol 2008; 52 (24): 2032-42.
5. Барсуков А.В., Зобнина М.П., Таланцева М.С. Гипертрофия левого желудочка и прогноз: данные пятилетнего ретроспективного наблюдения за пациентами с эссенциальной артериальной гипертензией. Артериальная гипертензия. 2012; 18 (5): 385-98
6. Chambless L.E, Folsom A.R, Clegg L.X. et al. Carotid wall thickness is predictive of incident clinical stroke: The Atherosclerosis Risk in Communities (ARIC) study. Am J Еpidemiology 2000; 151 (5): 478-87.
7. Dijk J.M, van der Graaf Y, Bots M.L. et al. Carotid intima-media thickness and the risk of new vascular events in patients with manifest atherosclerotic disease: the SMART study. Eur Heart J 2006; 27 (16): 1971-78.
8. Murakami S, Otsuka K, Hotta N. et al. Common carotid intima-media thickness is predictive of all-cause and cardiovascular mortality in elderly community-dwelling people: Longitudinal Investigation for the Longevity and Aging in Hokkaido County (LILAC) study. Biomed Pharmacother 2005; 59 (Suppl. 1): S49-53.
9. Hitha B, Pappachan J.M, Pillai H.B. et al. Microalbuminuria in patients with essential hypertension and its relationship to target organ damage: an Indian experience. Saudi J Kidney Dis Transpl 2008; 19 (3): 411-9.
10. Кузнецова Т.Ю., Гаврилов Д.В., Самоходская Л.М. и др. Клинико-генетические факторы риска развития микроальбуминурии при артериальной гипертензии. Системные гипертензии. 2010; 1: 15-21.
11. Hu D.C, Zhao X.L, Shao J.C. et al. Interaction of six candidate genes in essential hypertension. Genet Mol Res 2014; 13 (4): 8385-95.
12. Devereux R.B, Alonso D.R, Lutas E.M. et al. Echocardiographic assessment of left ventricular hypertrophy: comparison to necropsy findings. Am J Cardiol 1986; 57 (6): 450-8.
13. Snapir A, Scheinin M, Groop L.C.et al. The insertion/deletion variation in the a2B-adrenoceptor does not seem to modify the risk for acute myocardial infarction, but may modify the risk for hypertension in sib-pairs from families with type 2 diabetes. Cardiovasc Diabetol 2003; 24 (2): 15.
14. Lima J.J, Feng H, Duckworth L. et al. Association analyses of adrenergic receptor polymorphisms with obesity and metabolic alterations. Metabolism 2007; 56 (6): 757-65.
15. Salimi S, Firoozrai M, Nourmohammadi I. et al. Endothelial nitric oxide synthase gene intron4 VNTR polymorphism in patients with coronary artery disease in Iran. Indian J Med Res 2006; 124 (6): 683-8.
16. Ehret G.B, Munroe P.B, Rice K.M. et al. Genetic variants in novel pathways influence blood pressure and cardiovascular disease risk. Nature 2011; 478 (7367): 103-9.
17. Coutinho T, Turner S.T, Kullo I. Aortic pulse wave velocity is associated with measures of subclinical target organ damage. JACC Cardiovasc Imaging 2011; 4 (7): 754-61.
18. Frigo G, Bertolo O, Roman E. et al. Relationship of left ventricular mass with clinic blood pressure measured over a six month period vs. ambulatory blood pressure (abstract). J Hypertens 2000; 18 (2): 44.
19. Nambi V, Chambless L, Folsom A.R. et al. Carotid intima-media thickness and presence or absence of plaque improves prediction of coronary heart disease risk: the ARIC (Atherosclerosis Risk In Communities) study. J Am Coll Cardiol 2010; 55: 1600-07.
20. Peters S.A, den Ruijter H.M, Bots M.L, Moons K.G. Improvements in risk stratification for the occurrence of cardiovascular disease by imaging subclinical atherosclerosis: a systematic review. Heart 2012; 98 (3): 177-84.
21. Reboldi G, Gentile G, Angeli F, Verdecchia P. Microalbuminuria and hypertension. Minerva Medica 2005; 96 (4): 261-75.
22. Payne J.R, Eleftheriou K.I, James L.E. et al. Left ventricular growth response to exercise and cigarette smoking: data from LARGE Heart. Heart 2006; 92 (12): 1784-88.
23. Grandi A.M, Zanzi P, Piantanida E.et al. Obesity and left ventricular diastolic function: noninvasive study in normotensives and newly diagnosed never-treated hypertensives. Int J Obes Relat Metab Disord 2000; 24 (8): 954-58.
24. Falqui V, Viazzi F, Leoncini G. et al. Blood pressure load, vascular permeability and target organ damage in primary hypertension. J Nephrol 2007; 20 (Suppl. 12): S63-7.
25. Bonnet F, Marre M, Halimi J.M et al. Waist circumference and the metabolic syndrome predict the development of elevated albuminuria in non-diabetic subjects: the DESIR study. J Hypertens 2006; 24 (6): 1157-63.
26. Frangogiannis N.G. The immune system and cardiac repair. Pharmacol Res 2008; 58 (2): 88-111.
27. Aggoun Y, Bonnet D, Sidi D. et al. Arterial mechanical changes in children with familial hypercholesterolemia. Arteriocler Thromb Vasc Biol 2000; 20: 2070-75.
28. Wilkinson I.B, Prasad K. Hall I.R. et al. Increased central pulse pressure and augmentation index in subjects with hypercholesterolemia. J Am Coll Cardiol 2002; 39: 1005-11.
29. Li X, Li Y, Jia N. et al. Angiotensin-converting enzyme gene deletion allele increases the risk of left ventricular hypertrophy: evidence from a meta-analysis. Mol Biol Rep 2012; 39 (12): 10063-75.
30. Di Mauro M, Izzicupo P, Santarelli F et al. ACE and AGTR1 polymorphisms and left ventricular hypertrophy in endurance athletes. Med Sci Sports Exerc 2010; 42-(5): 915-21.
31. Park E.Y, Ahn H.M, Lee J.A, Hong Y.M. Insertion/deletion polymorphism of angiotensin converting enzyme gene in Korean hypertensive adolescents. Heart Vessels 2009; 24 (3): 193-8.
32. Imbalzano E, Vatrano M, Quartuccio S et al. Clinical impact of angiotensin I converting enzyme polymorphisms in subjects with resistant hypertension. Mol Cell Biochem 2017 Feb 11.
33. Pedrinelli R, Dell'Omo G, Penno G. et al. Alpha-adducin and angiotensin-converting enzyme polymorphisms in hypertension: evidence for a joint influence on albuminuria. J Hypertens 2006; 24 (5): 931-7.
34. Parchwani D.N, Palandurkar K.M, Hema Chandan Kumar D, Patel D.J. Genetic Predisposition to Diabetic Nephropathy: Evidence for a Role of ACE (I/D) Gene Polymorphism in Type 2 Diabetic Population from Kutch Region. Indian J Clin Biochem 2015; 30 (1): 43-54.
35. Ott C, Schwarz T, Hilgers K.F. et al. Left-ventricular structure and function are influenced by angiotensinogen gene polymorphism (-20 A/C) in young male patients. Am J Hypertens 2007; 20 (9): 974-80.
36. Елисеева М.Р, Срожидинова Н.З, Хамидуллаева Г.А, Абдуллаева Г.Ж. Генетические детерминанты ремоделирования сердечно-сосудистой системы при эссенциальной гипертонии у узбеков. Тер. архив. 2009; 81 (1): 64-9.
37. Kelly M, Bagnall R.D, Peverill R.E. et al. A polymorphic miR-155 binding site in AGTR1 is associated with cardiac hypertrophy in Friedreich ataxia. J Mol Cell Cardiol 2011; 51 (5): 848-54.
38. Jin Y, Kuznetsova T, Thijs L. et al. Association of left ventricular mass with the AGTR1 A1166C polymorphism. Am J Hypertens 2012; 25 (4): 472-8.
39. Buraczynskа M, Ksiazek P, Lopatynski J. et al. Association of the reninangiotensin system gene polymorphism with nephropathy in type II diabetes. Polskie archiwum medycyny wewnetrznej 2002; 108 (2): 725-30.
40. Fabris B, Bortoletto M, Candido R. et al. Genetic polymorphisms of the renin-angiotensin-aldosterone system and renal insufficiency in essential hypertension. J Hypertens 2005; 23 (2): 309-16.
41. Abd El-Aziz T.A, Mohamed R.H. Influence of MTHFR C677T gene polymorphism in the development of cardiovascular disease in Egyptian patients with rheumatoid arthritis. Gene 2017; 610: 127-32.
42. Saitou M, Osonoi T, Kawamori R. et al. Genetic risk factors and the anti-atherosclerotic effect of pioglitazone on carotid atherosclerosis of subjects with type 2 diabetes a retrospective study. J Atheroscler Thromb 2010; 17 (4): 386-94.
43. Koo H.S, Lee H.S, Hong Y.M. Methylenetetrahydrofolate reductase TT genotype as a predictor of cardiovascular risk in hypertensive adolescents. Pediatr Cardiol 2008; 29 (1): 1.
44. Ukinc K, Ersoz H.O, Karahan C. et al. Methyltetrahydrofolate reductase C677T gene mutation and hyperhomocysteinemia as a novel risk factor for diabetic nephropathy. Endocrine 2009; 36 (2): 255-61.
45. El-Baz R, Settin A, Ismaeel A et al. MTHFR C677T, A1298C and ACE I/D polymorphisms as risk factors for diabetic nephropathy among type 2 diabetic patients. J Renin Angiotensin Aldosterone Syst 2012; 13 (4): 472-7.
Рецензия
Для цитирования:
Мулерова Т.А. Клинические и генетические факторы, определяющие поражения органов-мишеней у пациентов с артериальной гипертензией среди населения Горной Шории. Системные гипертензии. 2017;14(3):42-50.
For citation:
Mulerova T.A. Clinical and genetic factors determining target lesions of patients with arterial hypertension among Mountain Shoria population. Systemic Hypertension. 2017;14(3):42-50.